論文の概要: TraHGR: Few-shot Learning for Hand Gesture Recognition via
ElectroMyography
- arxiv url: http://arxiv.org/abs/2203.16336v1
- Date: Mon, 28 Mar 2022 15:43:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-01 10:44:43.335819
- Title: TraHGR: Few-shot Learning for Hand Gesture Recognition via
ElectroMyography
- Title(参考訳): TraHGR: 筋電図による手指ジェスチャー認識のためのFew-shot Learning
- Authors: Soheil Zabihi, Elahe Rahimian, Amir Asif, Arash Mohammadi
- Abstract要約: ハンドジェスチャ認識のためのトランスフォーマー(TraHGR)に基づくハイブリッドフレームワークを提案する。
TraHGRは2つの並列パスで構成され、各モジュールの利点を統合するための融合センターとして機能する線形レイヤが続く。
提案するTraHGRアーキテクチャを検証し,検証するために,幅広い実験を行った。
- 参考スコア(独自算出の注目度): 19.51045409936039
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning-based Hand Gesture Recognition (HGR) via surface Electromyogram
(sEMG) signals has recently shown significant potential for development of
advanced myoelectric-controlled prosthesis. Existing deep learning approaches,
typically, include only one model as such can hardly maintain acceptable
generalization performance in changing scenarios. In this paper, we aim to
address this challenge by capitalizing on the recent advances of hybrid models
and transformers. In other words, we propose a hybrid framework based on the
transformer architecture, which is a relatively new and revolutionizing deep
learning model. The proposed hybrid architecture, referred to as the
Transformer for Hand Gesture Recognition (TraHGR), consists of two parallel
paths followed by a linear layer that acts as a fusion center to integrate the
advantage of each module and provide robustness over different scenarios. We
evaluated the proposed architecture TraHGR based on the commonly used second
Ninapro dataset, referred to as the DB2. The sEMG signals in the DB2 dataset
are measured in the real-life conditions from 40 healthy users, each performing
49 gestures. We have conducted extensive set of experiments to test and
validate the proposed TraHGR architecture, and have compared its achievable
accuracy with more than five recently proposed HGR classification algorithms
over the same dataset. We have also compared the results of the proposed TraHGR
architecture with each individual path and demonstrated the distinguishing
power of the proposed hybrid architecture. The recognition accuracies of the
proposed TraHGR architecture are 86.18%, 88.91%, 81.44%, and 93.84%, which are
2.48%, 5.12%, 8.82%, and 4.30% higher than the state-ofthe-art performance for
DB2 (49 gestures), DB2-B (17 gestures), DB2-C (23 gestures), and DB2-D (9
gestures), respectively.
- Abstract(参考訳): 表面筋電図(sEMG)信号による深層学習に基づくハンドジェスチャ認識(HGR)は,近年,高度な筋電義歯の開発に有意な可能性を示唆している。
既存のディープラーニングアプローチは、通常、1つのモデルしか含まないため、シナリオを変える際に許容できる一般化性能をほとんど維持できない。
本稿では,ハイブリッドモデルとトランスフォーマの最近の進歩を活かして,この課題に取り組むことを目的とする。
言い換えると、我々はトランスフォーマーアーキテクチャに基づくハイブリッドフレームワークを提案し、これは比較的新しくて革新的なディープラーニングモデルである。
TraHGR(Transformer for Hand Gesture Recognition)と呼ばれる提案されたハイブリッドアーキテクチャは、2つの並列パスと、各モジュールの利点を統合し、異なるシナリオに対して堅牢性を提供する融合センターとして機能する線形レイヤで構成されている。
提案アーキテクチャであるTraHGRをDB2と呼ばれる2番目のNinaproデータセットに基づいて評価した。
DB2データセットのsEMG信号は、40人の健康ユーザから実生活環境で測定され、それぞれ49のジェスチャーを実行する。
我々は提案したTraHGRアーキテクチャのテストと検証のために広範囲な実験を行い、その達成可能な精度を、同じデータセット上で最近提案された5つ以上のHGR分類アルゴリズムと比較した。
また、提案したTraHGRアーキテクチャの結果を個々の経路と比較し、提案したハイブリッドアーキテクチャの識別能力を実証した。
提案するtrahgrアーキテクチャの認識精度は86.18%,88.91%,81.44%,93.84%であり,それぞれ2.48%,5.12%,8.82%,4.30%がdb2 (49ジェスチャ),db2-b (17ジェスチャ),db2-c (23ジェスチャ),db2-d (9ジェスチャ) である。
関連論文リスト
- Dual-TSST: A Dual-Branch Temporal-Spectral-Spatial Transformer Model for EEG Decoding [2.0721229324537833]
デュアルブランチ時間スペクトル空間変換器(Dual-TSST)を用いた新しいデコードアーキテクチャネットワークを提案する。
提案するDual-TSSTは様々なタスクにおいて優れており,平均精度80.67%の脳波分類性能が期待できる。
本研究は,高性能脳波デコーディングへの新たなアプローチを提供するとともに,将来のCNN-Transformerベースのアプリケーションにも大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-09-05T05:08:43Z) - Handling Geometric Domain Shifts in Semantic Segmentation of Surgical RGB and Hyperspectral Images [67.66644395272075]
本稿では,幾何学的アウト・オブ・ディストリビューションデータに直面する場合の,最先端のセマンティックセマンティックセマンティクスモデルの最初の解析を行う。
本稿では, 汎用性を高めるために, 有機移植(Organ Transplantation)と呼ばれる拡張技術を提案する。
我々の拡張技術は、RGBデータに対して最大67%、HSIデータに対して90%のSOAモデル性能を改善し、実際のOODテストデータに対して、分配内パフォーマンスのレベルでのパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-27T19:13:15Z) - EMGTFNet: Fuzzy Vision Transformer to decode Upperlimb sEMG signals for
Hand Gestures Recognition [0.1611401281366893]
本稿では,手動ジェスチャー認識を行うために,EMGTFNetと呼ばれるファジィニューラルブロック(FNB)を用いた視覚変換器(ViT)アーキテクチャを提案する。
提案モデルの精度は49種類の手ジェスチャーからなるNinaProデータベースを用いて検証した。
論文 参考訳(メタデータ) (2023-09-23T18:55:26Z) - From Unimodal to Multimodal: improving sEMG-Based Pattern Recognition
via deep generative models [1.1477981286485912]
マルチモーダルハンドジェスチャ認識(HGR)システムは,HGRシステムと比較して高い認識精度を実現することができる。
本稿では,仮想慣性計測ユニット(IMU)信号を用いた表面筋電図(sEMG)に基づくHGRの精度向上のための新しい生成手法を提案する。
論文 参考訳(メタデータ) (2023-08-08T07:15:23Z) - Pre-training Transformers for Knowledge Graph Completion [81.4078733132239]
知識グラフの伝達可能な表現を学習するための新しい帰納的KG表現モデル(iHT)を提案する。
iHT はエンティティエンコーダ (BERT など) と、Transformer によってパラメータ化される隣り合うリレーショナルスコアリング関数からなる。
提案手法は,従来のSOTAモデルに比べて25%以上の相対的相互ランクの改善が得られた。
論文 参考訳(メタデータ) (2023-03-28T02:10:37Z) - Transformer-based approaches to Sentiment Detection [55.41644538483948]
テキスト分類のための4種類の最先端変圧器モデルの性能について検討した。
RoBERTa変換モデルは82.6%のスコアでテストデータセット上で最高のパフォーマンスを示し、品質予測に非常に推奨されている。
論文 参考訳(メタデータ) (2023-03-13T17:12:03Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
トランスフォーマーモデルは広範囲のアプリケーションにまたがって優れた精度を実現する。
最近のTransformerモデルの推測に必要な計算量と帯域幅は、かなり増加しています。
Transformerモデルをより効率的にすることに注力している。
論文 参考訳(メタデータ) (2023-02-27T18:18:13Z) - HYDRA-HGR: A Hybrid Transformer-based Architecture for Fusion of
Macroscopic and Microscopic Neural Drive Information [11.443553761853856]
本研究では,顕微鏡レベルで時間的特徴と空間的特徴のセットを同時に抽出するハイブリッドモデルを提案する。
提案したHYDRA-HGRフレームワークは平均94.86%の精度で250ミリ秒のウィンドウサイズを実現している。
論文 参考訳(メタデータ) (2022-10-27T02:23:27Z) - ViT-HGR: Vision Transformer-based Hand Gesture Recognition from High
Density Surface EMG Signals [14.419091034872682]
本研究では,高密度(HD-sEMG)信号から手動ジェスチャー認識を行う視覚変換器(ViT)アーキテクチャについて検討・設計する。
提案したViT-HGRフレームワークは,トレーニング時間の問題を克服し,多数の手の動きをスクラッチから正確に分類することができる。
64サンプル (31.25 ms) の窓サイズ実験では, 平均テスト精度は84.62 +/-3.07%であり, 78, 210個のパラメータしか利用していない。
論文 参考訳(メタデータ) (2022-01-25T02:42:50Z) - TransGAN: Two Transformers Can Make One Strong GAN [111.07699201175919]
我々は、純粋なトランスフォーマーベースのアーキテクチャのみを用いて、完全に畳み込みのないGANテキストを構築できる最初のパイロット研究を行う。
バニラGANアーキテクチャはtextbfTransGANと呼ばれ、メモリフレンドリーなトランスフォーマーベースのジェネレータで構成されています。
当社の最高のアーキテクチャは、コンボリューションバックボーンに基づく最新のGANと比較して非常に競争力のあるパフォーマンスを実現します。
論文 参考訳(メタデータ) (2021-02-14T05:24:48Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。