Topological Burning Glass Effect
- URL: http://arxiv.org/abs/2203.16382v2
- Date: Wed, 19 Oct 2022 13:19:25 GMT
- Title: Topological Burning Glass Effect
- Authors: Simon K\"orber, Lorenzo Privitera, Jan Carl Budich, Bj\"orn Trauzettel
- Abstract summary: We study a central spin that is quasiperiodically driven by two incommensurate frequencies, and statically coupled to $N-1$ surrounding spins.
In the strong coupling regime, the adiabatic dynamics of the total system is readily understood to imprint on the central spin an $N$-fold enhanced topological frequency conversion.
We argue that the topological burning glass effect is induced by the non-unitary dynamics of the central spin, which locally involves the collective motion of the surrounding spins.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We reveal a topological burning glass effect, where the local response of a
system exhibits a topological quantization that is enhanced by an integer due
to its environmental coupling. As a paradigmatic platform for this intriguing
phenomenon, we study a central spin that is quasiperiodically driven by two
incommensurate frequencies, and statically coupled to $N-1$ surrounding spins.
In the strong coupling regime, the adiabatic dynamics of the total system is
readily understood to imprint on the central spin an $N$-fold enhanced
topological frequency conversion between the two driving frequencies. We argue
that the topological burning glass effect is induced by the non-unitary
dynamics of the central spin, which locally involves the collective motion of
the surrounding spins. Our results are derived in the framework of adiabatic
perturbation theory and fully corroborated by exact numerical simulations.
Related papers
- Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - A topologically protected quantum dynamo effect in a driven spin-boson
model [0.0]
We describe a quantum dynamo effect in a driven system coupled to a harmonic oscillator describing a cavity mode or to a collection of modes forming an Ohmic bosonic bath.
This field opposes the change of the external driving field in a way reminiscent of Faraday's law of induction.
We show that the dynamo effect is directly related to the dynamically measured topology of this spin-$frac12$ and thus in the adiabatic limit provides a topologically protected method to convert driving work into a coherent field in the reservoir.
arXiv Detail & Related papers (2022-08-02T19:37:47Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Dynamical detection of mean-field topological phases in an interacting
Chern insulator [11.848843951626527]
We propose a scheme based on quench dynamics to detect the mean-field topological phase diagram of an insulator.
We find two characteristic times $t_s$ and $t_c$ which capture the emergence of dynamical self-consistent particle number density.
The number of mean-field topological phase is determined by the spin polarizations of four Dirac points at the time $t_s$.
arXiv Detail & Related papers (2022-06-22T12:37:15Z) - Dynamical decoupling for realization of topological frequency conversion [2.169919643934826]
Periodically driven systems provide a versatile platform to simulate many topological phenomena.
We investigate the influence of realistic experimental noise on the realization of a two-level system under a two-frequency drive.
arXiv Detail & Related papers (2022-04-29T07:51:06Z) - Topological Properties of Photonic Bands with Synthetic Momentum [0.0]
We investigate topological aspects of photonic crystal bands in a hybrid momentum space consisting of a genuine momentum and a synthetic one.
Remarkably, the unconventional behaviour of the synthetic momentum allows for the existence of non-trivial topological phases.
Our results pave the way to the paradigm of rich topological phenomena of photonic systems with hybrid momentum space.
arXiv Detail & Related papers (2021-11-04T13:03:26Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Memory-Critical Dynamical Buildup of Phonon-Dressed Majorana Fermions [72.46695228124449]
We study a one-dimensional polaronic topological superconductor with phonon-dressed $p$-wave pairing.
We show that when the memory depth increases, the Majorana edge dynamics transits from relaxing monotonically to a plateau of substantial value into a collapse-and-buildup behavior.
arXiv Detail & Related papers (2020-06-24T07:32:51Z) - Environmentally Induced Entanglement -- Anomalous Behavior in the
Adiabatic Regime [0.0]
In a perturbative regime the influence of the environment on the system dynamics can effectively be described by a unitary contribution.
For resonant qubits, even in the adiabatic regime, the entanglement dynamics is still influenced by an environmentally induced Hamiltonian interaction.
arXiv Detail & Related papers (2020-06-08T08:39:03Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.