論文の概要: Perfectly Accurate Membership Inference by a Dishonest Central Server in
Federated Learning
- arxiv url: http://arxiv.org/abs/2203.16463v2
- Date: Thu, 9 Nov 2023 08:44:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-10 19:11:37.963908
- Title: Perfectly Accurate Membership Inference by a Dishonest Central Server in
Federated Learning
- Title(参考訳): 連合学習における不正中央サーバによる完全高精度メンバーシップ推定
- Authors: Georg Pichler and Marco Romanelli and Leonardo Rey Vega and Pablo
Piantanida
- Abstract要約: フェデレートラーニングは、強力なプライバシー保証を提供すると期待されている。
本手法では, 単純だが非常に効果的なメンバーシップ推論攻撃アルゴリズムを提案する。
本手法は, 何千ものサンプルを用いたトレーニングセットにおいて, 1つのサンプルを同定する上で, 完全な精度を提供する。
- 参考スコア(独自算出の注目度): 34.13555530204307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning is expected to provide strong privacy guarantees, as only
gradients or model parameters but no plain text training data is ever exchanged
either between the clients or between the clients and the central server. In
this paper, we challenge this claim by introducing a simple but still very
effective membership inference attack algorithm, which relies only on a single
training step. In contrast to the popular honest-but-curious model, we
investigate a framework with a dishonest central server. Our strategy is
applicable to models with ReLU activations and uses the properties of this
activation function to achieve perfect accuracy. Empirical evaluation on visual
classification tasks with MNIST, CIFAR10, CIFAR100 and CelebA datasets show
that our method provides perfect accuracy in identifying one sample in a
training set with thousands of samples. Occasional failures of our method lead
us to discover duplicate images in the CIFAR100 and CelebA datasets.
- Abstract(参考訳): Federated Learningは、グラデーションやモデルパラメータだけでなく、クライアント間またはクライアントと中央サーバ間でのプレーンテキストトレーニングデータが交換されることはないため、強力なプライバシー保証を提供すると期待されている。
本稿では,1つのトレーニングステップにのみ依存する,シンプルだが非常に効果的なメンバシップ推論攻撃アルゴリズムを導入することで,この主張に挑戦する。
一般的な正直な、しかし厳密なモデルとは対照的に、我々は不正な中央サーバを持つフレームワークを調査します。
我々の戦略は、ReLUアクティベーションを持つモデルに適用可能であり、このアクティベーション関数の特性を利用して完全な精度を実現する。
MNIST, CIFAR10, CIFAR100, CelebAデータセットを用いた視覚的分類課題の実証評価により, 数千のサンプルを用いたトレーニングセットにおける1つのサンプルの同定に最適な精度が得られた。
また,cifar100 と celeba のデータセットでは,重複画像が検出されることがある。
関連論文リスト
- ConDa: Fast Federated Unlearning with Contribution Dampening [46.074452659791575]
ConDaは、各クライアントのグローバルモデルに影響を与えるパラメータを追跡することによって、効率的なアンラーニングを実行するフレームワークである。
複数のデータセットで実験を行い、ConDaがクライアントのデータを忘れるのが効果的であることを実証する。
論文 参考訳(メタデータ) (2024-10-05T12:45:35Z) - Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
ディープジェネレータ技術は、区別がつかない高品質のフェイクビデオを制作し、深刻な社会的脅威をもたらす可能性がある。
従来の偽造検出手法は、データを直接集中的に訓練する。
本稿では,個人化表現を用いた新しいフェデレーション顔偽造検出学習を提案する。
論文 参考訳(メタデータ) (2024-06-17T02:20:30Z) - Cohort Squeeze: Beyond a Single Communication Round per Cohort in Cross-Device Federated Learning [51.560590617691005]
各コホートから「より多くのジュースを抽出できるかどうか」を単一の通信ラウンドでできることよりも検討する。
本手法は,デバイス間通信におけるFLモデルのトレーニングに必要な通信コストを最大74%削減する。
論文 参考訳(メタデータ) (2024-06-03T08:48:49Z) - Lightweight Unsupervised Federated Learning with Pretrained Vision Language Model [32.094290282897894]
フェデレートラーニングは、物理的に孤立したクライアントから、ユーザのデータのプライバシを保護しながら、集合モデルをトレーニングすることを目的としている。
本稿では,各クライアントのラベルのないデータを活用して,軽量なモデルトレーニングとコミュニケーションを行う,軽量な非教師付きフェデレーション学習手法を提案する。
提案手法は,CLIPのゼロショット予測と比較してモデル性能を大幅に向上させるとともに,教師付きフェデレーション学習ベンチマーク手法よりも優れる。
論文 参考訳(メタデータ) (2024-04-17T03:42:48Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
フェデレートラーニングは、さまざまな参加者の間で共通のモデルを協調的に訓練するための、広く使われているパラダイムとなっている。
多くの攻撃は、メンバーシップ、資産、または参加者データの完全な再構築のような機密情報を推測することは依然として可能であることを示した。
単純な線形モデルでは、集約されたモデル更新からクライアント固有のプロパティを効果的にキャプチャできることが示される。
論文 参考訳(メタデータ) (2023-03-07T14:11:01Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
フェデレーションラーニングにより、クライアントはプライベートデータを中央サーバーに送信することなく、グローバルモデルを共同でトレーニングできます。
em-Influenceという新しい概念を定義し、パラメータに対するこの影響を定量化し、このメトリクスを推定する効果的な効率的なモデルを提案しました。
論文 参考訳(メタデータ) (2020-12-20T14:34:36Z) - CatFedAvg: Optimising Communication-efficiency and Classification
Accuracy in Federated Learning [2.2172881631608456]
そこで我々はCatFedAvgというフェデレート学習アルゴリズムを新たに導入した。
コミュニケーション効率は向上するが、NIST戦略のカテゴリカバレッジを用いて学習の質を向上させる。
実験の結果,FedAvgよりもネットワーク転送率が70%低いMデータセットでは,10%の絶対点精度が向上していることがわかった。
論文 参考訳(メタデータ) (2020-11-14T06:52:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。