Bangla hate speech detection on social media using attention-based
recurrent neural network
- URL: http://arxiv.org/abs/2203.16775v1
- Date: Thu, 31 Mar 2022 03:31:53 GMT
- Title: Bangla hate speech detection on social media using attention-based
recurrent neural network
- Authors: Amit Kumar Das, Abdullah Al Asif, Anik Paul, and Md. Nur Hossain
- Abstract summary: This article proposed encoder decoder based machine learning model, a popular tool in NLP, to classify user's Bengali comments on Facebook pages.
A dataset of 7,425 Bengali comments, consisting of seven distinct categories of hate speeches, was used to train and evaluate our model.
Among the three encoder decoder algorithms, the attention-based decoder obtained the best accuracy (77%)
- Score: 2.1349209400003932
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hate speech has spread more rapidly through the daily use of technology and,
most notably, by sharing your opinions or feelings on social media in a
negative aspect. Although numerous works have been carried out in detecting
hate speeches in English, German, and other languages, very few works have been
carried out in the context of the Bengali language. In contrast, millions of
people communicate on social media in Bengali. The few existing works that have
been carried out need improvements in both accuracy and interpretability. This
article proposed encoder decoder based machine learning model, a popular tool
in NLP, to classify user's Bengali comments on Facebook pages. A dataset of
7,425 Bengali comments, consisting of seven distinct categories of hate
speeches, was used to train and evaluate our model. For extracting and encoding
local features from the comments, 1D convolutional layers were used. Finally,
the attention mechanism, LSTM, and GRU based decoders have been used for
predicting hate speech categories. Among the three encoder decoder algorithms,
the attention-based decoder obtained the best accuracy (77%).
Related papers
- CoSTA: Code-Switched Speech Translation using Aligned Speech-Text Interleaving [61.73180469072787]
We focus on the problem of spoken translation (ST) of code-switched speech in Indian languages to English text.
We present a new end-to-end model architecture COSTA that scaffolds on pretrained automatic speech recognition (ASR) and machine translation (MT) modules.
COSTA significantly outperforms many competitive cascaded and end-to-end multimodal baselines by up to 3.5 BLEU points.
arXiv Detail & Related papers (2024-06-16T16:10:51Z) - SpeechAlign: Aligning Speech Generation to Human Preferences [51.684183257809075]
We introduce SpeechAlign, an iterative self-improvement strategy that aligns speech language models to human preferences.
We show that SpeechAlign can bridge the distribution gap and facilitate continuous self-improvement of the speech language model.
arXiv Detail & Related papers (2024-04-08T15:21:17Z) - Analysis and Detection of Multilingual Hate Speech Using Transformer
Based Deep Learning [7.332311991395427]
As the prevalence of hate speech increases online, the demand for automated detection as an NLP task is increasing.
In this work, the proposed method is using transformer-based model to detect hate speech in social media, like twitter, Facebook, WhatsApp, Instagram, etc.
The Gold standard datasets were collected from renowned researcher Zeerak Talat, Sara Tonelli, Melanie Siegel, and Rezaul Karim.
The success rate of the proposed model for hate speech detection is higher than the existing baseline and state-of-the-art models with accuracy in Bengali dataset is 89%, in English: 91%, in German
arXiv Detail & Related papers (2024-01-19T20:40:23Z) - Multilingual self-supervised speech representations improve the speech
recognition of low-resource African languages with codeswitching [65.74653592668743]
Finetuning self-supervised multilingual representations reduces absolute word error rates by up to 20%.
In circumstances with limited training data finetuning self-supervised representations is a better performing and viable solution.
arXiv Detail & Related papers (2023-11-25T17:05:21Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSyn is a context-synergized neural network that explicitly incorporates user- and conversational context for detecting implicit hate speech in online conversations.
We show that CoSyn outperforms all our baselines in detecting implicit hate speech with absolute improvements in the range of 1.24% - 57.8%.
arXiv Detail & Related papers (2023-03-02T17:30:43Z) - Hate Speech and Offensive Language Detection in Bengali [5.765076125746209]
We develop an annotated dataset of 10K Bengali posts consisting of 5K actual and 5K Romanized Bengali tweets.
We implement several baseline models for the classification of such hateful posts.
We also explore the interlingual transfer mechanism to boost classification performance.
arXiv Detail & Related papers (2022-10-07T12:06:04Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
In this paper we focus on cross-lingual transfer learning to support hate speech detection in low-resource languages.
We leverage cross-lingual word embeddings to train our neural network systems on the source language and apply it to the target language.
We investigate the issue of label imbalance of hate speech datasets, since the high ratio of non-hate examples compared to hate examples often leads to low model performance.
arXiv Detail & Related papers (2022-01-15T20:48:14Z) - Role of Artificial Intelligence in Detection of Hateful Speech for
Hinglish Data on Social Media [1.8899300124593648]
Prevalence of Hindi-English code-mixed data (Hinglish) is on the rise with most of the urban population all over the world.
Hate speech detection algorithms deployed by most social networking platforms are unable to filter out offensive and abusive content posted in these code-mixed languages.
We propose a methodology for efficient detection of unstructured code-mix Hinglish language.
arXiv Detail & Related papers (2021-05-11T10:02:28Z) - Leveraging Multilingual Transformers for Hate Speech Detection [11.306581296760864]
We leverage state of the art Transformer language models to identify hate speech in a multilingual setting.
With a pre-trained multilingual Transformer-based text encoder at the base, we are able to successfully identify and classify hate speech from multiple languages.
arXiv Detail & Related papers (2021-01-08T20:23:50Z) - Hate Speech detection in the Bengali language: A dataset and its
baseline evaluation [0.8793721044482612]
This paper presents a new dataset of 30,000 user comments tagged by crowd sourcing and varified by experts.
All the comments are collected from YouTube and Facebook comment section and classified into seven categories.
A total of 50 annotators annotated each comment three times and the majority vote was taken as the final annotation.
arXiv Detail & Related papers (2020-12-17T15:53:54Z) - NLP-CIC at SemEval-2020 Task 9: Analysing sentiment in code-switching
language using a simple deep-learning classifier [63.137661897716555]
Code-switching is a phenomenon in which two or more languages are used in the same message.
We use a standard convolutional neural network model to predict the sentiment of tweets in a blend of Spanish and English languages.
arXiv Detail & Related papers (2020-09-07T19:57:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.