Robust Meta-Reinforcement Learning with Curriculum-Based Task Sampling
- URL: http://arxiv.org/abs/2203.16801v1
- Date: Thu, 31 Mar 2022 05:16:24 GMT
- Title: Robust Meta-Reinforcement Learning with Curriculum-Based Task Sampling
- Authors: Morio Matsumoto, Hiroya Matsuba, and Toshihiro Kujirai
- Abstract summary: We show that Robust Meta Reinforcement Learning with Guided Task Sampling (RMRL-GTS) is an effective method that restricts task sampling based on scores and epochs.
In order to achieve robust meta-RL, it is necessary not only to intensively sample tasks with poor scores, but also to restrict and expand the task regions of the tasks to be sampled.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Meta-reinforcement learning (meta-RL) acquires meta-policies that show good
performance for tasks in a wide task distribution. However, conventional
meta-RL, which learns meta-policies by randomly sampling tasks, has been
reported to show meta-overfitting for certain tasks, especially for easy tasks
where an agent can easily get high scores. To reduce effects of the
meta-overfitting, we considered meta-RL with curriculum-based task sampling.
Our method is Robust Meta Reinforcement Learning with Guided Task Sampling
(RMRL-GTS), which is an effective method that restricts task sampling based on
scores and epochs. We show that in order to achieve robust meta-RL, it is
necessary not only to intensively sample tasks with poor scores, but also to
restrict and expand the task regions of the tasks to be sampled.
Related papers
- Meta-RTL: Reinforcement-Based Meta-Transfer Learning for Low-Resource Commonsense Reasoning [61.8360232713375]
We propose a reinforcement-based multi-source meta-transfer learning framework (Meta-RTL) for low-resource commonsense reasoning.
We present a reinforcement-based approach to dynamically estimating source task weights that measure the contribution of the corresponding tasks to the target task in the meta-transfer learning.
Experimental results demonstrate that Meta-RTL substantially outperforms strong baselines and previous task selection strategies.
arXiv Detail & Related papers (2024-09-27T18:22:22Z) - Meta-Reinforcement Learning Based on Self-Supervised Task Representation
Learning [23.45043290237396]
MoSS is a context-based Meta-reinforcement learning algorithm based on Self-Supervised task representation learning.
On MuJoCo and Meta-World benchmarks, MoSS outperforms prior in terms of performance, sample efficiency (3-50x faster), adaptation efficiency, and generalization.
arXiv Detail & Related papers (2023-04-29T15:46:19Z) - Learning Action Translator for Meta Reinforcement Learning on
Sparse-Reward Tasks [56.63855534940827]
This work introduces a novel objective function to learn an action translator among training tasks.
We theoretically verify that the value of the transferred policy with the action translator can be close to the value of the source policy.
We propose to combine the action translator with context-based meta-RL algorithms for better data collection and more efficient exploration during meta-training.
arXiv Detail & Related papers (2022-07-19T04:58:06Z) - Learning to generate imaginary tasks for improving generalization in
meta-learning [12.635773307074022]
The success of meta-learning on existing benchmarks is predicated on the assumption that the distribution of meta-training tasks covers meta-testing tasks.
Recent solutions have pursued augmentation of meta-training tasks, while it is still an open question to generate both correct and sufficiently imaginary tasks.
In this paper, we seek an approach that up-samples meta-training tasks from the task representation via a task up-sampling network. Besides, the resulting approach named Adversarial Task Up-sampling (ATU) suffices to generate tasks that can maximally contribute to the latest meta-learner by maximizing an adversarial loss.
arXiv Detail & Related papers (2022-06-09T08:21:05Z) - On the Effectiveness of Fine-tuning Versus Meta-reinforcement Learning [71.55412580325743]
We show that multi-task pretraining with fine-tuning on new tasks performs equally as well, or better, than meta-pretraining with meta test-time adaptation.
This is encouraging for future research, as multi-task pretraining tends to be simpler and computationally cheaper than meta-RL.
arXiv Detail & Related papers (2022-06-07T13:24:00Z) - Meta-learning with an Adaptive Task Scheduler [93.63502984214918]
Existing meta-learning algorithms randomly sample meta-training tasks with a uniform probability.
It is likely that tasks are detrimental with noise or imbalanced given a limited number of meta-training tasks.
We propose an adaptive task scheduler (ATS) for the meta-training process.
arXiv Detail & Related papers (2021-10-26T22:16:35Z) - Adaptive Task Sampling for Meta-Learning [79.61146834134459]
Key idea of meta-learning for few-shot classification is to mimic the few-shot situations faced at test time.
We propose an adaptive task sampling method to improve the generalization performance.
arXiv Detail & Related papers (2020-07-17T03:15:53Z) - MetaCURE: Meta Reinforcement Learning with Empowerment-Driven
Exploration [52.48362697163477]
Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on sparse-reward tasks.
We model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning.
We develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies.
arXiv Detail & Related papers (2020-06-15T06:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.