Learning to generate imaginary tasks for improving generalization in
meta-learning
- URL: http://arxiv.org/abs/2206.04335v1
- Date: Thu, 9 Jun 2022 08:21:05 GMT
- Title: Learning to generate imaginary tasks for improving generalization in
meta-learning
- Authors: Yichen Wu and Long-Kai Huang and Ying Wei
- Abstract summary: The success of meta-learning on existing benchmarks is predicated on the assumption that the distribution of meta-training tasks covers meta-testing tasks.
Recent solutions have pursued augmentation of meta-training tasks, while it is still an open question to generate both correct and sufficiently imaginary tasks.
In this paper, we seek an approach that up-samples meta-training tasks from the task representation via a task up-sampling network. Besides, the resulting approach named Adversarial Task Up-sampling (ATU) suffices to generate tasks that can maximally contribute to the latest meta-learner by maximizing an adversarial loss.
- Score: 12.635773307074022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success of meta-learning on existing benchmarks is predicated on the
assumption that the distribution of meta-training tasks covers meta-testing
tasks. Frequent violation of the assumption in applications with either
insufficient tasks or a very narrow meta-training task distribution leads to
memorization or learner overfitting. Recent solutions have pursued augmentation
of meta-training tasks, while it is still an open question to generate both
correct and sufficiently imaginary tasks. In this paper, we seek an approach
that up-samples meta-training tasks from the task representation via a task
up-sampling network. Besides, the resulting approach named Adversarial Task
Up-sampling (ATU) suffices to generate tasks that can maximally contribute to
the latest meta-learner by maximizing an adversarial loss. On few-shot sine
regression and image classification datasets, we empirically validate the
marked improvement of ATU over state-of-the-art task augmentation strategies in
the meta-testing performance and also the quality of up-sampled tasks.
Related papers
- Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Active Instruction Tuning: Improving Cross-Task Generalization by
Training on Prompt Sensitive Tasks [101.40633115037983]
Instruction tuning (IT) achieves impressive zero-shot generalization results by training large language models (LLMs) on a massive amount of diverse tasks with instructions.
How to select new tasks to improve the performance and generalizability of IT models remains an open question.
We propose active instruction tuning based on prompt uncertainty, a novel framework to identify informative tasks, and then actively tune the models on the selected tasks.
arXiv Detail & Related papers (2023-11-01T04:40:05Z) - Towards Task Sampler Learning for Meta-Learning [37.02030832662183]
Meta-learning aims to learn general knowledge with diverse training tasks conducted from limited data, and then transfer it to new tasks.
It is commonly believed that increasing task diversity will enhance the generalization ability of meta-learning models.
This paper challenges this view through empirical and theoretical analysis.
arXiv Detail & Related papers (2023-07-18T01:53:18Z) - Meta-Reinforcement Learning Based on Self-Supervised Task Representation
Learning [23.45043290237396]
MoSS is a context-based Meta-reinforcement learning algorithm based on Self-Supervised task representation learning.
On MuJoCo and Meta-World benchmarks, MoSS outperforms prior in terms of performance, sample efficiency (3-50x faster), adaptation efficiency, and generalization.
arXiv Detail & Related papers (2023-04-29T15:46:19Z) - Learning Action Translator for Meta Reinforcement Learning on
Sparse-Reward Tasks [56.63855534940827]
This work introduces a novel objective function to learn an action translator among training tasks.
We theoretically verify that the value of the transferred policy with the action translator can be close to the value of the source policy.
We propose to combine the action translator with context-based meta-RL algorithms for better data collection and more efficient exploration during meta-training.
arXiv Detail & Related papers (2022-07-19T04:58:06Z) - Robust Meta-Reinforcement Learning with Curriculum-Based Task Sampling [0.0]
We show that Robust Meta Reinforcement Learning with Guided Task Sampling (RMRL-GTS) is an effective method that restricts task sampling based on scores and epochs.
In order to achieve robust meta-RL, it is necessary not only to intensively sample tasks with poor scores, but also to restrict and expand the task regions of the tasks to be sampled.
arXiv Detail & Related papers (2022-03-31T05:16:24Z) - Meta-learning with an Adaptive Task Scheduler [93.63502984214918]
Existing meta-learning algorithms randomly sample meta-training tasks with a uniform probability.
It is likely that tasks are detrimental with noise or imbalanced given a limited number of meta-training tasks.
We propose an adaptive task scheduler (ATS) for the meta-training process.
arXiv Detail & Related papers (2021-10-26T22:16:35Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
Current meta-learning algorithms require a large number of meta-training tasks, which may not be accessible in real-world scenarios.
By meta-learning with task gradient (MLTI), our approach effectively generates additional tasks by randomly sampling a pair of tasks and interpolating the corresponding features and labels.
Empirically, in our experiments on eight datasets from diverse domains, we find that the proposed general MLTI framework is compatible with representative meta-learning algorithms and consistently outperforms other state-of-the-art strategies.
arXiv Detail & Related papers (2021-06-04T20:15:34Z) - Adaptive Task Sampling for Meta-Learning [79.61146834134459]
Key idea of meta-learning for few-shot classification is to mimic the few-shot situations faced at test time.
We propose an adaptive task sampling method to improve the generalization performance.
arXiv Detail & Related papers (2020-07-17T03:15:53Z) - Model-based Adversarial Meta-Reinforcement Learning [38.28304764312512]
We propose Model-based Adversarial Meta-Reinforcement Learning (AdMRL)
AdMRL aims to minimize the worst-case sub-optimality gap across all tasks in a family of tasks.
We evaluate our approach on several continuous control benchmarks and demonstrate its efficacy in the worst-case performance over all tasks.
arXiv Detail & Related papers (2020-06-16T02:21:49Z) - Learning Context-aware Task Reasoning for Efficient Meta-reinforcement
Learning [29.125234093368732]
We propose a novel meta-RL strategy to achieve human-level efficiency in learning novel tasks.
We decompose the meta-RL problem into three sub-tasks, task-exploration, task-inference and task-fulfillment.
Our algorithm effectively performs exploration for task inference, improves sample efficiency during both training and testing, and mitigates the meta-overfitting problem.
arXiv Detail & Related papers (2020-03-03T07:38:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.