A survey of neural models for the automatic analysis of conversation:
Towards a better integration of the social sciences
- URL: http://arxiv.org/abs/2203.16891v1
- Date: Thu, 31 Mar 2022 08:59:54 GMT
- Title: A survey of neural models for the automatic analysis of conversation:
Towards a better integration of the social sciences
- Authors: Chlo\'e Clavel and Matthieu Labeau and Justine Cassell
- Abstract summary: New approaches to neural architectures for the analysis of conversation have been introduced over the past couple of years.
They include neural architectures for detecting emotion, dialogue acts, and sentiment polarity.
While the architectures themselves are extremely promising, the phenomena they have been applied to to date are but a small part of what makes conversation engaging.
- Score: 3.2123668211020773
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Some exciting new approaches to neural architectures for the analysis of
conversation have been introduced over the past couple of years. These include
neural architectures for detecting emotion, dialogue acts, and sentiment
polarity. They take advantage of some of the key attributes of contemporary
machine learning, such as recurrent neural networks with attention mechanisms
and transformer-based approaches. However, while the architectures themselves
are extremely promising, the phenomena they have been applied to to date are
but a small part of what makes conversation engaging. In this paper we survey
these neural architectures and what they have been applied to. On the basis of
the social science literature, we then describe what we believe to be the most
fundamental and definitional feature of conversation, which is its
co-construction over time by two or more interlocutors. We discuss how neural
architectures of the sort surveyed could profitably be applied to these more
fundamental aspects of conversation, and what this buys us in terms of a better
analysis of conversation and even, in the longer term, a better way of
generating conversation for a conversational system.
Related papers
- WavChat: A Survey of Spoken Dialogue Models [66.82775211793547]
Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain.
These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech.
Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems.
arXiv Detail & Related papers (2024-11-15T04:16:45Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Emotion Recognition in Conversation using Probabilistic Soft Logic [17.62924003652853]
emotion recognition in conversation (ERC) is a sub-field of emotion recognition that focuses on conversations that contain two or more utterances.
We implement our approach in a framework called Probabilistic Soft Logic (PSL), a declarative templating language.
PSL provides functionality for the incorporation of results from neural models into PSL models.
We compare our method with state-of-the-art purely neural ERC systems, and see almost a 20% improvement.
arXiv Detail & Related papers (2022-07-14T23:59:06Z) - A Review of Dialogue Systems: From Trained Monkeys to Stochastic Parrots [0.0]
We aim to deploy artificial intelligence to build automated dialogue agents that can converse with humans.
We present a broad overview of methods developed to build dialogue systems over the years.
arXiv Detail & Related papers (2021-11-02T08:07:55Z) - Recent Advances in Deep Learning-based Dialogue Systems [12.798560005546262]
We mainly focus on the deep learning-based dialogue systems.
This survey is the most comprehensive and upto-date one at present in the area of dialogue systems and dialogue-related tasks.
arXiv Detail & Related papers (2021-05-10T14:07:49Z) - Retrieval Augmentation Reduces Hallucination in Conversation [49.35235945543833]
We explore the use of neural-retrieval-in-the-loop architectures for knowledge-grounded dialogue.
We show that our best models obtain state-of-the-art performance on two knowledge-grounded conversational tasks.
arXiv Detail & Related papers (2021-04-15T16:24:43Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
We review the previous methods from the perspective of dialogue modeling.
We discuss three typical patterns of dialogue modeling that are widely-used in dialogue comprehension tasks.
arXiv Detail & Related papers (2021-03-04T15:50:17Z) - Ranking Enhanced Dialogue Generation [77.8321855074999]
How to effectively utilize the dialogue history is a crucial problem in multi-turn dialogue generation.
Previous works usually employ various neural network architectures to model the history.
This paper proposes a Ranking Enhanced Dialogue generation framework.
arXiv Detail & Related papers (2020-08-13T01:49:56Z) - BiERU: Bidirectional Emotional Recurrent Unit for Conversational
Sentiment Analysis [18.1320976106637]
The main difference between conversational sentiment analysis and single sentence sentiment analysis is the existence of context information.
Existing approaches employ complicated deep learning structures to distinguish different parties in a conversation and then model the context information.
We propose a fast, compact and parameter-efficient party-ignorant framework named bidirectional emotional recurrent unit for conversational sentiment analysis.
arXiv Detail & Related papers (2020-05-31T11:13:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.