BiERU: Bidirectional Emotional Recurrent Unit for Conversational
Sentiment Analysis
- URL: http://arxiv.org/abs/2006.00492v3
- Date: Sun, 4 Jul 2021 14:20:52 GMT
- Title: BiERU: Bidirectional Emotional Recurrent Unit for Conversational
Sentiment Analysis
- Authors: Wei Li, Wei Shao, Shaoxiong Ji and Erik Cambria
- Abstract summary: The main difference between conversational sentiment analysis and single sentence sentiment analysis is the existence of context information.
Existing approaches employ complicated deep learning structures to distinguish different parties in a conversation and then model the context information.
We propose a fast, compact and parameter-efficient party-ignorant framework named bidirectional emotional recurrent unit for conversational sentiment analysis.
- Score: 18.1320976106637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sentiment analysis in conversations has gained increasing attention in recent
years for the growing amount of applications it can serve, e.g., sentiment
analysis, recommender systems, and human-robot interaction. The main difference
between conversational sentiment analysis and single sentence sentiment
analysis is the existence of context information which may influence the
sentiment of an utterance in a dialogue. How to effectively encode contextual
information in dialogues, however, remains a challenge. Existing approaches
employ complicated deep learning structures to distinguish different parties in
a conversation and then model the context information. In this paper, we
propose a fast, compact and parameter-efficient party-ignorant framework named
bidirectional emotional recurrent unit for conversational sentiment analysis.
In our system, a generalized neural tensor block followed by a two-channel
classifier is designed to perform context compositionality and sentiment
classification, respectively. Extensive experiments on three standard datasets
demonstrate that our model outperforms the state of the art in most cases.
Related papers
- PanoSent: A Panoptic Sextuple Extraction Benchmark for Multimodal Conversational Aspect-based Sentiment Analysis [74.41260927676747]
This paper bridges the gaps by introducing a multimodal conversational Sentiment Analysis (ABSA)
To benchmark the tasks, we construct PanoSent, a dataset annotated both manually and automatically, featuring high quality, large scale, multimodality, multilingualism, multi-scenarios, and covering both implicit and explicit sentiment elements.
To effectively address the tasks, we devise a novel Chain-of-Sentiment reasoning framework, together with a novel multimodal large language model (namely Sentica) and a paraphrase-based verification mechanism.
arXiv Detail & Related papers (2024-08-18T13:51:01Z) - Two in One Go: Single-stage Emotion Recognition with Decoupled Subject-context Transformer [78.35816158511523]
We present a single-stage emotion recognition approach, employing a Decoupled Subject-Context Transformer (DSCT) for simultaneous subject localization and emotion classification.
We evaluate our single-stage framework on two widely used context-aware emotion recognition datasets, CAER-S and EMOTIC.
arXiv Detail & Related papers (2024-04-26T07:30:32Z) - Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
This paper proposes to model multi-turn dialogues from a topic-aware perspective.
We use a dialogue segmentation algorithm to split a dialogue passage into topic-concentrated fragments in an unsupervised way.
We also present a novel model, Topic-Aware Dual-Attention Matching (TADAM) Network, which takes topic segments as processing elements.
arXiv Detail & Related papers (2023-09-18T11:03:55Z) - Multiscale Contextual Learning for Speech Emotion Recognition in
Emergency Call Center Conversations [4.297070083645049]
This paper presents a multi-scale conversational context learning approach for speech emotion recognition.
We investigated this approach on both speech transcriptions and acoustic segments.
According to our tests, the context derived from previous tokens has a more significant influence on accurate prediction than the following tokens.
arXiv Detail & Related papers (2023-08-28T20:31:45Z) - Mimicking the Thinking Process for Emotion Recognition in Conversation
with Prompts and Paraphrasing [26.043447749659478]
We propose a novel framework which mimics the thinking process when modeling complex factors.
We first comprehend the conversational context with a history-oriented prompt to selectively gather information from predecessors of the target utterance.
We then model the speaker's background with an experience-oriented prompt to retrieve the similar utterances from all conversations.
arXiv Detail & Related papers (2023-06-11T06:36:19Z) - deep learning of segment-level feature representation for speech emotion
recognition in conversations [9.432208348863336]
We propose a conversational speech emotion recognition method to deal with capturing attentive contextual dependency and speaker-sensitive interactions.
First, we use a pretrained VGGish model to extract segment-based audio representation in individual utterances.
Second, an attentive bi-directional recurrent unit (GRU) models contextual-sensitive information and explores intra- and inter-speaker dependencies jointly.
arXiv Detail & Related papers (2023-02-05T16:15:46Z) - DiaASQ : A Benchmark of Conversational Aspect-based Sentiment Quadruple
Analysis [84.80347062834517]
We introduce DiaASQ, aiming to detect the quadruple of target-aspect-opinion-sentiment in a dialogue.
We manually construct a large-scale high-quality DiaASQ dataset in both Chinese and English languages.
We develop a neural model to benchmark the task, which advances in effectively performing end-to-end quadruple prediction.
arXiv Detail & Related papers (2022-11-10T17:18:20Z) - Entity-level Sentiment Analysis in Contact Center Telephone
Conversations [1.691321108386792]
We show how we developed an entity-level sentiment analysis system that analyzes English telephone conversation transcripts in contact centers.
We present two approaches, one entirely based on the transformer-based DistilBERT model, and another that uses a convolutional neural network supplemented with some rules.
arXiv Detail & Related papers (2022-10-24T16:54:57Z) - Dialog speech sentiment classification for imbalanced datasets [7.84604505907019]
In this paper, we use single and bi-modal analysis of short dialog utterances and gain insights on the main factors that aid in sentiment detection.
We propose an architecture which uses a learning rate scheduler and different monitoring criteria and provides state-of-the-art results for the SWITCHBOARD imbalanced sentiment dataset.
arXiv Detail & Related papers (2021-09-15T11:43:04Z) - A computational model implementing subjectivity with the 'Room Theory'.
The case of detecting Emotion from Text [68.8204255655161]
This work introduces a new method to consider subjectivity and general context dependency in text analysis.
By using similarity measure between words, we are able to extract the relative relevance of the elements in the benchmark.
This method could be applied to all the cases where evaluating subjectivity is relevant to understand the relative value or meaning of a text.
arXiv Detail & Related papers (2020-05-12T21:26:04Z) - A Deep Neural Framework for Contextual Affect Detection [51.378225388679425]
A short and simple text carrying no emotion can represent some strong emotions when reading along with its context.
We propose a Contextual Affect Detection framework which learns the inter-dependence of words in a sentence.
arXiv Detail & Related papers (2020-01-28T05:03:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.