WavThruVec: Latent speech representation as intermediate features for
neural speech synthesis
- URL: http://arxiv.org/abs/2203.16930v1
- Date: Thu, 31 Mar 2022 10:21:08 GMT
- Title: WavThruVec: Latent speech representation as intermediate features for
neural speech synthesis
- Authors: Hubert Siuzdak, Piotr Dura, Pol van Rijn, Nori Jacoby
- Abstract summary: WavThruVec is a two-stage architecture that resolves the bottleneck by using high-dimensional Wav2Vec 2.0 embeddings as intermediate speech representation.
We show that the proposed model not only matches the quality of state-of-the-art neural models, but also presents useful properties enabling tasks like voice conversion or zero-shot synthesis.
- Score: 1.1470070927586016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in neural text-to-speech research have been dominated by
two-stage pipelines utilizing low-level intermediate speech representation such
as mel-spectrograms. However, such predetermined features are fundamentally
limited, because they do not allow to exploit the full potential of a
data-driven approach through learning hidden representations. For this reason,
several end-to-end methods have been proposed. However, such models are harder
to train and require a large number of high-quality recordings with
transcriptions. Here, we propose WavThruVec - a two-stage architecture that
resolves the bottleneck by using high-dimensional Wav2Vec 2.0 embeddings as
intermediate speech representation. Since these hidden activations provide
high-level linguistic features, they are more robust to noise. That allows us
to utilize annotated speech datasets of a lower quality to train the
first-stage module. At the same time, the second-stage component can be trained
on large-scale untranscribed audio corpora, as Wav2Vec 2.0 embeddings are
time-aligned and speaker-independent. This results in an increased
generalization capability to out-of-vocabulary words, as well as to a better
generalization to unseen speakers. We show that the proposed model not only
matches the quality of state-of-the-art neural models, but also presents useful
properties enabling tasks like voice conversion or zero-shot synthesis.
Related papers
- SyllableLM: Learning Coarse Semantic Units for Speech Language Models [21.762112843104028]
We introduce a controllable self-supervised technique to merge speech representations into coarser syllable-like units.
Our method produces controllable-rate semantic units at as low as 5Hz and 60bps and SotA inc segmentation and clustering.
SyllableLM achieves significant improvements in efficiency with a 30x reduction in training compute and a 4x wall-clock inference speedup.
arXiv Detail & Related papers (2024-10-05T04:29:55Z) - Utilizing Neural Transducers for Two-Stage Text-to-Speech via Semantic
Token Prediction [15.72317249204736]
We propose a novel text-to-speech (TTS) framework centered around a neural transducer.
Our approach divides the whole TTS pipeline into semantic-level sequence-to-sequence (seq2seq) modeling and fine-grained acoustic modeling stages.
Our experimental results on zero-shot adaptive TTS demonstrate that our model surpasses the baseline in terms of speech quality and speaker similarity.
arXiv Detail & Related papers (2024-01-03T02:03:36Z) - High-Fidelity Speech Synthesis with Minimal Supervision: All Using
Diffusion Models [56.00939852727501]
Minimally-supervised speech synthesis decouples TTS by combining two types of discrete speech representations.
Non-autoregressive framework enhances controllability, and duration diffusion model enables diversified prosodic expression.
arXiv Detail & Related papers (2023-09-27T09:27:03Z) - Representation Learning With Hidden Unit Clustering For Low Resource
Speech Applications [37.89857769906568]
We describe an approach to self-supervised representation learning from raw audio using a hidden unit clustering (HUC) framework.
The input to the model consists of audio samples that are windowed and processed with 1-D convolutional layers.
The HUC framework, allowing the categorization of the representations into a small number of phoneme-like units, is used to train the model for learning semantically rich speech representations.
arXiv Detail & Related papers (2023-07-14T13:02:10Z) - NaturalSpeech 2: Latent Diffusion Models are Natural and Zero-Shot
Speech and Singing Synthesizers [90.83782600932567]
We develop NaturalSpeech 2, a TTS system that leverages a neural audio predictor with residual vectorizers to get the quantized latent vectors.
We scale NaturalSpeech 2 to large-scale datasets with 44K hours of speech and singing data and evaluate its voice quality on unseen speakers.
NaturalSpeech 2 outperforms previous TTS systems by a large margin in terms of prosody/timbre similarity, synthesis, and voice quality in a zero-shot setting.
arXiv Detail & Related papers (2023-04-18T16:31:59Z) - TranSpeech: Speech-to-Speech Translation With Bilateral Perturbation [61.564874831498145]
TranSpeech is a speech-to-speech translation model with bilateral perturbation.
We establish a non-autoregressive S2ST technique, which repeatedly masks and predicts unit choices.
TranSpeech shows a significant improvement in inference latency, enabling speedup up to 21.4x than autoregressive technique.
arXiv Detail & Related papers (2022-05-25T06:34:14Z) - SVTS: Scalable Video-to-Speech Synthesis [105.29009019733803]
We introduce a scalable video-to-speech framework consisting of two components: a video-to-spectrogram predictor and a pre-trained neural vocoder.
We are the first to show intelligible results on the challenging LRS3 dataset.
arXiv Detail & Related papers (2022-05-04T13:34:07Z) - Integrating end-to-end neural and clustering-based diarization: Getting
the best of both worlds [71.36164750147827]
Clustering-based approaches assign speaker labels to speech regions by clustering speaker embeddings such as x-vectors.
End-to-end neural diarization (EEND) directly predicts diarization labels using a neural network.
We propose a simple but effective hybrid diarization framework that works with overlapped speech and for long recordings containing an arbitrary number of speakers.
arXiv Detail & Related papers (2020-10-26T06:33:02Z) - Any-to-Many Voice Conversion with Location-Relative Sequence-to-Sequence
Modeling [61.351967629600594]
This paper proposes an any-to-many location-relative, sequence-to-sequence (seq2seq), non-parallel voice conversion approach.
In this approach, we combine a bottle-neck feature extractor (BNE) with a seq2seq synthesis module.
Objective and subjective evaluations show that the proposed any-to-many approach has superior voice conversion performance in terms of both naturalness and speaker similarity.
arXiv Detail & Related papers (2020-09-06T13:01:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.