V2SFlow: Video-to-Speech Generation with Speech Decomposition and Rectified Flow
- URL: http://arxiv.org/abs/2411.19486v1
- Date: Fri, 29 Nov 2024 05:55:20 GMT
- Title: V2SFlow: Video-to-Speech Generation with Speech Decomposition and Rectified Flow
- Authors: Jeongsoo Choi, Ji-Hoon Kim, Jinyu Li, Joon Son Chung, Shujie Liu,
- Abstract summary: We introduce V2SFlow, a novel Video-to-Speech (V2S) framework designed to generate natural and intelligible speech directly from silent talking face videos.
To address these challenges, we decompose the speech signal into manageable subspaces, each representing distinct speech attributes, and predict them directly from the visual input.
To generate coherent and realistic speech from these predicted attributes, we employ a rectified flow matching decoder built on a Transformer architecture.
- Score: 57.51550409392103
- License:
- Abstract: In this paper, we introduce V2SFlow, a novel Video-to-Speech (V2S) framework designed to generate natural and intelligible speech directly from silent talking face videos. While recent V2S systems have shown promising results on constrained datasets with limited speakers and vocabularies, their performance often degrades on real-world, unconstrained datasets due to the inherent variability and complexity of speech signals. To address these challenges, we decompose the speech signal into manageable subspaces (content, pitch, and speaker information), each representing distinct speech attributes, and predict them directly from the visual input. To generate coherent and realistic speech from these predicted attributes, we employ a rectified flow matching decoder built on a Transformer architecture, which models efficient probabilistic pathways from random noise to the target speech distribution. Extensive experiments demonstrate that V2SFlow significantly outperforms state-of-the-art methods, even surpassing the naturalness of ground truth utterances.
Related papers
- VQalAttent: a Transparent Speech Generation Pipeline based on Transformer-learned VQ-VAE Latent Space [0.49109372384514843]
VQalAttent is a lightweight model designed to generate fake speech with tunable performance and interpretability.
Our results demonstrate VQalAttent's capacity to generate intelligible speech samples with limited computational resources.
arXiv Detail & Related papers (2024-11-22T00:21:39Z) - SimpleSpeech 2: Towards Simple and Efficient Text-to-Speech with Flow-based Scalar Latent Transformer Diffusion Models [64.40250409933752]
We build upon our previous publication by implementing a simple and efficient non-autoregressive (NAR) TTS framework, termed SimpleSpeech 2.
SimpleSpeech 2 effectively combines the strengths of both autoregressive (AR) and non-autoregressive (NAR) methods.
We show a significant improvement in generation performance and generation speed compared to our previous work and other state-of-the-art (SOTA) large-scale TTS models.
arXiv Detail & Related papers (2024-08-25T17:07:39Z) - Cross-Utterance Conditioned VAE for Speech Generation [27.5887600344053]
We present the Cross-Utterance Conditioned Variational Autoencoder speech synthesis (CUC-VAE S2) framework to enhance prosody and ensure natural speech generation.
We propose two practical algorithms tailored for distinct speech synthesis applications: CUC-VAE TTS for text-to-speech and CUC-VAE SE for speech editing.
arXiv Detail & Related papers (2023-09-08T06:48:41Z) - RobustL2S: Speaker-Specific Lip-to-Speech Synthesis exploiting
Self-Supervised Representations [13.995231731152462]
We propose RobustL2S, a modularized framework for Lip-to-Speech synthesis.
A non-autoregressive sequence-to-sequence model maps self-supervised visual features to a representation of disentangled speech content.
A vocoder then converts the speech features into raw waveforms.
arXiv Detail & Related papers (2023-07-03T09:13:57Z) - UnitY: Two-pass Direct Speech-to-speech Translation with Discrete Units [64.61596752343837]
We present a novel two-pass direct S2ST architecture, UnitY, which first generates textual representations and predicts discrete acoustic units.
We enhance the model performance by subword prediction in the first-pass decoder.
We show that the proposed methods boost the performance even when predicting spectrogram in the second pass.
arXiv Detail & Related papers (2022-12-15T18:58:28Z) - TranSpeech: Speech-to-Speech Translation With Bilateral Perturbation [61.564874831498145]
TranSpeech is a speech-to-speech translation model with bilateral perturbation.
We establish a non-autoregressive S2ST technique, which repeatedly masks and predicts unit choices.
TranSpeech shows a significant improvement in inference latency, enabling speedup up to 21.4x than autoregressive technique.
arXiv Detail & Related papers (2022-05-25T06:34:14Z) - Wav2vec-Switch: Contrastive Learning from Original-noisy Speech Pairs
for Robust Speech Recognition [52.71604809100364]
We propose wav2vec-Switch, a method to encode noise robustness into contextualized representations of speech.
Specifically, we feed original-noisy speech pairs simultaneously into the wav2vec 2.0 network.
In addition to the existing contrastive learning task, we switch the quantized representations of the original and noisy speech as additional prediction targets.
arXiv Detail & Related papers (2021-10-11T00:08:48Z) - End-to-End Video-To-Speech Synthesis using Generative Adversarial
Networks [54.43697805589634]
We propose a new end-to-end video-to-speech model based on Generative Adversarial Networks (GANs)
Our model consists of an encoder-decoder architecture that receives raw video as input and generates speech.
We show that this model is able to reconstruct speech with remarkable realism for constrained datasets such as GRID.
arXiv Detail & Related papers (2021-04-27T17:12:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.