Quantum coherent control in pulsed waveguide optomechanics
- URL: http://arxiv.org/abs/2203.16946v3
- Date: Mon, 4 Apr 2022 14:03:58 GMT
- Title: Quantum coherent control in pulsed waveguide optomechanics
- Authors: Junyin Zhang, Changlong Zhu, Christian Wolff, and Birgit Stiller
- Abstract summary: Coherent control of traveling acoustic excitations in a waveguide system is an interesting way to manipulate and transduce classical and quantum information.
We present an effective Hamiltonian formalism in the dynamic regime using optical pulses that links waveguide optomechanics and cavity optomechanics.
- Score: 3.2408799843284664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coherent control of traveling acoustic excitations in a waveguide system is
an interesting way to manipulate and transduce classical and quantum
information. So far, these interactions, often based on optomechanical
resonators or Brillouin scattering, have been studied in the steady-state
regime using continuous waves. However, waveguide experiments are often based
on optical pump pulses which require treatment in a dynamic framework. In this
paper, we present an effective Hamiltonian formalism in the dynamic regime
using optical pulses that links waveguide optomechanics and cavity
optomechanics, which can be used in the classical and quantum regime including
quantum noise. Based on our formalism, a closed solution for coupled-mode
equation under the undepleted assumption is provided and we found that the
strong coupling regime is already accessible in current Brillouin waveguides by
using pulses. We further investigate several possible experiments within
waveguide optomechanics, including Brillouin-based coherent transfer, Brillouin
cooling, and optoacoustic entanglement.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Optoacoustic entanglement in a continuous Brillouin-active solid state
system [0.0]
Entanglement in hybrid quantum systems comprised of fundamentally different degrees of freedom is of interest.
We propose to engineer bipartite entanglement between traveling acoustic phonons in a Brillouin active solid state system.
The proposed mechanism presents an important feature in that it does not require initial preparation of the quantum ground state of the phonon mode.
arXiv Detail & Related papers (2024-01-19T12:38:15Z) - Heisenberg treatment of multiphoton pulses in waveguide QED with
time-delayed feedback [62.997667081978825]
We propose a projection onto a complete set of states in the Hilbert space to decompose the multi-time correlations into single-time matrix elements.
We consider the paradigmatic example of a two-level system that couples to a semi-infinite waveguide and interacts with quantum light pulses.
arXiv Detail & Related papers (2021-11-04T12:29:25Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - Dynamical phases and quantum correlations in an emitter-waveguide system
with feedback [0.0]
We investigate the creation and control of emergent collective behavior and quantum correlations using feedback in an emitter-waveguide system.
We show the emergence of a time-crystal phase, the transition to which is controlled by the feedback strength.
Our study corroborates the potential of integrated emitter-waveguide systems for the exploration of collective quantum phenomena.
arXiv Detail & Related papers (2021-02-04T16:27:20Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Quantum electrodynamics in a topological waveguide [47.187609203210705]
In this work we investigate the properties of superconducting qubits coupled to a metamaterial waveguide based on a photonic analog of the Su-Schrieffer-Heeger model.
We explore topologically-induced properties of qubits coupled to such a waveguide, ranging from the formation of directional qubit-photon bound states to topology-dependent cooperative radiation effects.
arXiv Detail & Related papers (2020-05-08T00:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.