Optoacoustic entanglement in a continuous Brillouin-active solid state
system
- URL: http://arxiv.org/abs/2401.10665v1
- Date: Fri, 19 Jan 2024 12:38:15 GMT
- Title: Optoacoustic entanglement in a continuous Brillouin-active solid state
system
- Authors: Changlong Zhu, Claudiu Genes, and Birgit Stiller
- Abstract summary: Entanglement in hybrid quantum systems comprised of fundamentally different degrees of freedom is of interest.
We propose to engineer bipartite entanglement between traveling acoustic phonons in a Brillouin active solid state system.
The proposed mechanism presents an important feature in that it does not require initial preparation of the quantum ground state of the phonon mode.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entanglement in hybrid quantum systems comprised of fundamentally different
degrees of freedom, such as light and mechanics is of interest for a wide range
of applications in quantum technologies. Here, we propose to engineer bipartite
entanglement between traveling acoustic phonons in a Brillouin active solid
state system and the accompanying light wave. The effect is achieved by
applying optical pump pulses to state-of-the-art waveguides, exciting a
Brillouin Stokes process. This pulsed approach, in a system operating in a
regime orthogonal to standard optomechanical setups, allows for the generation
of entangled photon-phonon pairs, resilient to thermal fluctuations. We propose
an experimental platform where readout of the optoacoustics entanglement is
done by the simultaneous detection of Stokes and Anti-Stokes photons in a
two-pump configuration. The proposed mechanism presents an important feature in
that it does not require initial preparation of the quantum ground state of the
phonon mode.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Multi-phonon Fock state heralding with single-photon detection [0.0]
We show how single-photon detection can herald selected multi-phonon Fock states, even in the presence of optical losses.
We also present an approach for quantum tomography of the heralded phonon states.
arXiv Detail & Related papers (2024-07-26T22:51:53Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Floquet engineering of optical nonlinearities: a quantum many-body
approach [0.0]
Floquet-engineering has been extensively applied to a wide range of classical and quantum settings.
We show that effective optical nonlinearities can be created by subjecting the light field to a repeated pulse sequence.
arXiv Detail & Related papers (2022-03-10T18:58:35Z) - Dynamical emission of phonon pairs in optomechanical systems [6.259066812918972]
Multiphonon state plays an important role in quantum information processing and quantum metrology.
We propose a scheme to realize dynamical emission of phonon pairs based on the technique of stimulated Raman adiabatic passage in a single cavity optomechanical system.
Our proposal can be extended to achieve an antibunched $n$-phonon emitter, which has potential applications for on-chip quantum communications.
arXiv Detail & Related papers (2021-12-26T09:45:56Z) - Moir\'e-induced optical non-linearities: Single and multi-photon
resonances [0.0]
Moir'e excitons promise a new platform with which to generate and manipulate hybrid quantum phases of light and matter.
We show that the steady states exhibit a rich phase diagram with pronounced bi-stabilities governed by multi-photon resonances.
In the presence of an incoherent pumping of excitons we find that the system can realise one- and multi-photon lasers.
arXiv Detail & Related papers (2021-08-13T11:47:44Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Proposal for a quantum traveling Brillouin resonator [0.0]
We propose an on-chip liquid based Brillouin system that is predicted to exhibit ultra-high coherent phonon-photon coupling.
The system is comprised of a silicon-based "slot" waveguide filled with superfluid helium.
Such devices may enable applications ranging from ultra-sensitive superfluid-based gyroscopes, to non-reciprocal optical circuits.
arXiv Detail & Related papers (2020-06-08T08:13:00Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.