Few-Shot Class-Incremental Learning by Sampling Multi-Phase Tasks
- URL: http://arxiv.org/abs/2203.17030v1
- Date: Thu, 31 Mar 2022 13:46:41 GMT
- Title: Few-Shot Class-Incremental Learning by Sampling Multi-Phase Tasks
- Authors: Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan
- Abstract summary: A model should recognize new classes and maintain discriminability over old classes.
The task of recognizing few-shot new classes without forgetting old classes is called few-shot class-incremental learning (FSCIL)
We propose a new paradigm for FSCIL based on meta-learning by LearnIng Multi-phase Incremental Tasks (LIMIT)
- Score: 59.12108527904171
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: New classes arise frequently in our ever-changing world, e.g., emerging
topics in social media and new types of products in e-commerce. A model should
recognize new classes and meanwhile maintain discriminability over old classes.
Under severe circumstances, only limited novel instances are available to
incrementally update the model. The task of recognizing few-shot new classes
without forgetting old classes is called few-shot class-incremental learning
(FSCIL). In this work, we propose a new paradigm for FSCIL based on
meta-learning by LearnIng Multi-phase Incremental Tasks (LIMIT), which
synthesizes fake FSCIL tasks from the base dataset. The data format of fake
tasks is consistent with the `real' incremental tasks, and we can build a
generalizable feature space for the unseen tasks through meta-learning.
Besides, LIMIT also constructs a calibration module based on transformer, which
calibrates the old class classifiers and new class prototypes into the same
scale and fills in the semantic gap. The calibration module also adaptively
contextualizes the instance-specific embedding with a set-to-set function.
LIMIT efficiently adapts to new classes and meanwhile resists forgetting over
old classes. Experiments on three benchmark datasets (CIFAR100, miniImageNet,
and CUB200) and large-scale dataset, i.e., ImageNet ILSVRC2012 validate that
LIMIT achieves state-of-the-art performance.
Related papers
- UIFormer: A Unified Transformer-based Framework for Incremental Few-Shot Object Detection and Instance Segmentation [38.331860053615955]
This paper introduces a novel framework for unified incremental few-shot object detection (iFSOD) and instance segmentation (iFSIS) using the Transformer architecture.
Our goal is to create an optimal solution for situations where only a few examples of novel object classes are available.
arXiv Detail & Related papers (2024-11-13T12:29:44Z) - Covariance-based Space Regularization for Few-shot Class Incremental Learning [25.435192867105552]
Few-shot Class Incremental Learning (FSCIL) requires the model to continually learn new classes with limited labeled data.
Due to the limited data in incremental sessions, models are prone to overfitting new classes and suffering catastrophic forgetting of base classes.
Recent advancements resort to prototype-based approaches to constrain the base class distribution and learn discriminative representations of new classes.
arXiv Detail & Related papers (2024-11-02T08:03:04Z) - Towards Non-Exemplar Semi-Supervised Class-Incremental Learning [33.560003528712414]
Class-incremental learning aims to gradually recognize new classes while maintaining the discriminability of old ones.
We propose a non-exemplar semi-supervised CIL framework with contrastive learning and semi-supervised incremental prototype classifier (Semi-IPC)
Semi-IPC learns a prototype for each class with unsupervised regularization, enabling the model to incrementally learn from partially labeled new data.
arXiv Detail & Related papers (2024-03-27T06:28:19Z) - Expandable Subspace Ensemble for Pre-Trained Model-Based Class-Incremental Learning [65.57123249246358]
We propose ExpAndable Subspace Ensemble (EASE) for PTM-based CIL.
We train a distinct lightweight adapter module for each new task, aiming to create task-specific subspaces.
Our prototype complement strategy synthesizes old classes' new features without using any old class instance.
arXiv Detail & Related papers (2024-03-18T17:58:13Z) - LLM Augmented LLMs: Expanding Capabilities through Composition [56.40953749310957]
CALM -- Composition to Augment Language Models -- introduces cross-attention between models to compose their representations and enable new capabilities.
We illustrate that augmenting PaLM2-S with a smaller model trained on low-resource languages results in an absolute improvement of up to 13% on tasks like translation into English.
When PaLM2-S is augmented with a code-specific model, we see a relative improvement of 40% over the base model for code generation and explanation tasks.
arXiv Detail & Related papers (2024-01-04T18:53:01Z) - Class-Incremental Learning: A Survey [84.30083092434938]
Class-Incremental Learning (CIL) enables the learner to incorporate the knowledge of new classes incrementally.
CIL tends to catastrophically forget the characteristics of former ones, and its performance drastically degrades.
We provide a rigorous and unified evaluation of 17 methods in benchmark image classification tasks to find out the characteristics of different algorithms.
arXiv Detail & Related papers (2023-02-07T17:59:05Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z) - Novel Class Discovery in Semantic Segmentation [104.30729847367104]
We introduce a new setting of Novel Class Discovery in Semantic (NCDSS)
It aims at segmenting unlabeled images containing new classes given prior knowledge from a labeled set of disjoint classes.
In NCDSS, we need to distinguish the objects and background, and to handle the existence of multiple classes within an image.
We propose the Entropy-based Uncertainty Modeling and Self-training (EUMS) framework to overcome noisy pseudo-labels.
arXiv Detail & Related papers (2021-12-03T13:31:59Z) - Fuzzy Simplicial Networks: A Topology-Inspired Model to Improve Task
Generalization in Few-shot Learning [1.0062040918634414]
Few-shot learning algorithms are designed to generalize well to new tasks with limited data.
We introduce a new few-shot model called Fuzzy Simplicial Networks (FSN) which leverages a construction from topology to more flexibly represent each class from limited data.
arXiv Detail & Related papers (2020-09-23T17:01:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.