Covariance-based Space Regularization for Few-shot Class Incremental Learning
- URL: http://arxiv.org/abs/2411.01172v1
- Date: Sat, 02 Nov 2024 08:03:04 GMT
- Title: Covariance-based Space Regularization for Few-shot Class Incremental Learning
- Authors: Yijie Hu, Guanyu Yang, Zhaorui Tan, Xiaowei Huang, Kaizhu Huang, Qiu-Feng Wang,
- Abstract summary: Few-shot Class Incremental Learning (FSCIL) requires the model to continually learn new classes with limited labeled data.
Due to the limited data in incremental sessions, models are prone to overfitting new classes and suffering catastrophic forgetting of base classes.
Recent advancements resort to prototype-based approaches to constrain the base class distribution and learn discriminative representations of new classes.
- Score: 25.435192867105552
- License:
- Abstract: Few-shot Class Incremental Learning (FSCIL) presents a challenging yet realistic scenario, which requires the model to continually learn new classes with limited labeled data (i.e., incremental sessions) while retaining knowledge of previously learned base classes (i.e., base sessions). Due to the limited data in incremental sessions, models are prone to overfitting new classes and suffering catastrophic forgetting of base classes. To tackle these issues, recent advancements resort to prototype-based approaches to constrain the base class distribution and learn discriminative representations of new classes. Despite the progress, the limited data issue still induces ill-divided feature space, leading the model to confuse the new class with old classes or fail to facilitate good separation among new classes. In this paper, we aim to mitigate these issues by directly constraining the span of each class distribution from a covariance perspective. In detail, we propose a simple yet effective covariance constraint loss to force the model to learn each class distribution with the same covariance matrix. In addition, we propose a perturbation approach to perturb the few-shot training samples in the feature space, which encourages the samples to be away from the weighted distribution of other classes. Regarding perturbed samples as new class data, the classifier is forced to establish explicit boundaries between each new class and the existing ones. Our approach is easy to integrate into existing FSCIL approaches to boost performance. Experiments on three benchmarks validate the effectiveness of our approach, achieving a new state-of-the-art performance of FSCIL.
Related papers
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Few-Shot Class-Incremental Learning via Training-Free Prototype
Calibration [67.69532794049445]
We find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes.
We propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes.
arXiv Detail & Related papers (2023-12-08T18:24:08Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
Continual learning (CL) aims to learn different tasks (such as classification) in a non-stationary data stream without forgetting old ones.
We propose a concise and effective approach for CL with pre-trained models.
arXiv Detail & Related papers (2023-07-05T12:49:02Z) - S3C: Self-Supervised Stochastic Classifiers for Few-Shot
Class-Incremental Learning [22.243176199188238]
Few-shot class-incremental learning (FSCIL) aims to learn progressively about new classes with very few labeled samples, without forgetting the knowledge of already learnt classes.
FSCIL suffers from two major challenges: (i) over-fitting on the new classes due to limited amount of data, (ii) catastrophically forgetting about the old classes due to unavailability of data from these classes in the incremental stages.
arXiv Detail & Related papers (2023-07-05T12:41:46Z) - Harmonizing Base and Novel Classes: A Class-Contrastive Approach for
Generalized Few-Shot Segmentation [78.74340676536441]
We propose a class contrastive loss and a class relationship loss to regulate prototype updates and encourage a large distance between prototypes.
Our proposed approach achieves new state-of-the-art performance for the generalized few-shot segmentation task on PASCAL VOC and MS COCO datasets.
arXiv Detail & Related papers (2023-03-24T00:30:25Z) - Generalization Bounds for Few-Shot Transfer Learning with Pretrained
Classifiers [26.844410679685424]
We study the ability of foundation models to learn representations for classification that are transferable to new, unseen classes.
We show that the few-shot error of the learned feature map on new classes is small in case of class-feature-variability collapse.
arXiv Detail & Related papers (2022-12-23T18:46:05Z) - Adaptive Distribution Calibration for Few-Shot Learning with
Hierarchical Optimal Transport [78.9167477093745]
We propose a novel distribution calibration method by learning the adaptive weight matrix between novel samples and base classes.
Experimental results on standard benchmarks demonstrate that our proposed plug-and-play model outperforms competing approaches.
arXiv Detail & Related papers (2022-10-09T02:32:57Z) - Multi-Granularity Regularized Re-Balancing for Class Incremental
Learning [32.52884416761171]
Deep learning models suffer from catastrophic forgetting when learning new tasks.
Data imbalance between old and new classes is a key issue that leads to performance degradation of the model.
We propose an assumption-agnostic method, Multi-Granularity Regularized re-Balancing, to address this problem.
arXiv Detail & Related papers (2022-06-30T11:04:51Z) - Few-Shot Object Detection via Association and DIscrimination [83.8472428718097]
Few-shot object detection via Association and DIscrimination builds up a discriminative feature space for each novel class with two integral steps.
Experiments on Pascal VOC and MS-COCO datasets demonstrate FADI achieves new SOTA performance, significantly improving the baseline in any shot/split by +18.7.
arXiv Detail & Related papers (2021-11-23T05:04:06Z) - Subspace Regularizers for Few-Shot Class Incremental Learning [26.372024890126408]
We present a new family of subspace regularization schemes that encourage weight vectors for new classes to lie close to the subspace spanned by the weights of existing classes.
Our results show that simple geometric regularization of class representations offers an effective tool for continual learning.
arXiv Detail & Related papers (2021-10-13T22:19:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.