CADG: A Model Based on Cross Attention for Domain Generalization
- URL: http://arxiv.org/abs/2203.17067v1
- Date: Thu, 31 Mar 2022 14:35:21 GMT
- Title: CADG: A Model Based on Cross Attention for Domain Generalization
- Authors: Cheng Dai, Fan Li, Xiyao Li and Donglin Xie
- Abstract summary: In Domain Generalization (DG) tasks, models are trained by using only training data from the source domains to achieve generalization on an unseen target domain.
We design a model named CADG (cross attention for domain generalization), wherein cross attention plays a important role, to address distribution shift problem.
Experiments show that our proposed method achieves state-of-the-art performance on a variety of domain generalization benchmarks.
- Score: 6.136770353307872
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Domain Generalization (DG) tasks, models are trained by using only
training data from the source domains to achieve generalization on an unseen
target domain, this will suffer from the distribution shift problem. So it's
important to learn a classifier to focus on the common representation which can
be used to classify on multi-domains, so that this classifier can achieve a
high performance on an unseen target domain as well. With the success of cross
attention in various cross-modal tasks, we find that cross attention is a
powerful mechanism to align the features come from different distributions. So
we design a model named CADG (cross attention for domain generalization),
wherein cross attention plays a important role, to address distribution shift
problem. Such design makes the classifier can be adopted on multi-domains, so
the classifier will generalize well on an unseen domain. Experiments show that
our proposed method achieves state-of-the-art performance on a variety of
domain generalization benchmarks compared with other single model and can even
achieve a better performance than some ensemble-based methods.
Related papers
- Generalize or Detect? Towards Robust Semantic Segmentation Under Multiple Distribution Shifts [56.57141696245328]
In open-world scenarios, where both novel classes and domains may exist, an ideal segmentation model should detect anomaly classes for safety.
Existing methods often struggle to distinguish between domain-level and semantic-level distribution shifts.
arXiv Detail & Related papers (2024-11-06T11:03:02Z) - DIGIC: Domain Generalizable Imitation Learning by Causal Discovery [69.13526582209165]
Causality has been combined with machine learning to produce robust representations for domain generalization.
We make a different attempt by leveraging the demonstration data distribution to discover causal features for a domain generalizable policy.
We design a novel framework, called DIGIC, to identify the causal features by finding the direct cause of the expert action from the demonstration data distribution.
arXiv Detail & Related papers (2024-02-29T07:09:01Z) - Domain Generalization for Domain-Linked Classes [8.738092015092207]
In the real-world, classes may often be domain-linked, i.e. expressed only in a specific domain.
We propose a Fair and cONtrastive feature-space regularization algorithm for Domain-linked DG, FOND.
arXiv Detail & Related papers (2023-06-01T16:39:50Z) - Cross-Domain Ensemble Distillation for Domain Generalization [17.575016642108253]
We propose a simple yet effective method for domain generalization, named cross-domain ensemble distillation (XDED)
Our method generates an ensemble of the output logits from training data with the same label but from different domains and then penalizes each output for the mismatch with the ensemble.
We show that models learned by our method are robust against adversarial attacks and image corruptions.
arXiv Detail & Related papers (2022-11-25T12:32:36Z) - From Big to Small: Adaptive Learning to Partial-Set Domains [94.92635970450578]
Domain adaptation targets at knowledge acquisition and dissemination from a labeled source domain to an unlabeled target domain under distribution shift.
Recent advances show that deep pre-trained models of large scale endow rich knowledge to tackle diverse downstream tasks of small scale.
This paper introduces Partial Domain Adaptation (PDA), a learning paradigm that relaxes the identical class space assumption to that the source class space subsumes the target class space.
arXiv Detail & Related papers (2022-03-14T07:02:45Z) - Context-Conditional Adaptation for Recognizing Unseen Classes in Unseen
Domains [48.17225008334873]
We propose a feature generative framework integrated with a COntext COnditional Adaptive (COCOA) Batch-Normalization.
The generated visual features better capture the underlying data distribution enabling us to generalize to unseen classes and domains at test-time.
We thoroughly evaluate and analyse our approach on established large-scale benchmark - DomainNet.
arXiv Detail & Related papers (2021-07-15T17:51:16Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Robust Domain-Free Domain Generalization with Class-aware Alignment [4.442096198968069]
Domain-Free Domain Generalization (DFDG) is a model-agnostic method to achieve better generalization performance on the unseen test domain.
DFDG uses novel strategies to learn domain-invariant class-discriminative features.
It obtains competitive performance on both time series sensor and image classification public datasets.
arXiv Detail & Related papers (2021-02-17T17:46:06Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
Domain generalization (DG) serves as a promising solution to handle person Re-Identification (Re-ID)
We present a Dual Distribution Alignment Network (DDAN) which handles this challenge by selectively aligning distributions of multiple source domains.
We evaluate our DDAN on a large-scale Domain Generalization Re-ID (DG Re-ID) benchmark.
arXiv Detail & Related papers (2020-07-27T00:08:07Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
Domain Adaptation (DA) targets at adapting a model trained over the well-labeled source domain to the unlabeled target domain lying in different distributions.
We develop a novel Generative Few-shot Cross-domain Adaptation (GFCA) algorithm for fair cross-domain classification.
arXiv Detail & Related papers (2020-03-04T23:25:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.