Dual Distribution Alignment Network for Generalizable Person
Re-Identification
- URL: http://arxiv.org/abs/2007.13249v1
- Date: Mon, 27 Jul 2020 00:08:07 GMT
- Title: Dual Distribution Alignment Network for Generalizable Person
Re-Identification
- Authors: Peixian Chen, Pingyang Dai, Jianzhuang Liu, Feng Zheng, Qi Tian,
Rongrong Ji
- Abstract summary: Domain generalization (DG) serves as a promising solution to handle person Re-Identification (Re-ID)
We present a Dual Distribution Alignment Network (DDAN) which handles this challenge by selectively aligning distributions of multiple source domains.
We evaluate our DDAN on a large-scale Domain Generalization Re-ID (DG Re-ID) benchmark.
- Score: 174.36157174951603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain generalization (DG) serves as a promising solution to handle person
Re-Identification (Re-ID), which trains the model using labels from the source
domain alone, and then directly adopts the trained model to the target domain
without model updating. However, existing DG approaches are usually disturbed
by serious domain variations due to significant dataset variations.
Subsequently, DG highly relies on designing domain-invariant features, which is
however not well exploited, since most existing approaches directly mix
multiple datasets to train DG based models without considering the local
dataset similarities, i.e., examples that are very similar but from different
domains. In this paper, we present a Dual Distribution Alignment Network
(DDAN), which handles this challenge by mapping images into a domain-invariant
feature space by selectively aligning distributions of multiple source domains.
Such an alignment is conducted by dual-level constraints, i.e., the domain-wise
adversarial feature learning and the identity-wise similarity enhancement. We
evaluate our DDAN on a large-scale Domain Generalization Re-ID (DG Re-ID)
benchmark. Quantitative results demonstrate that the proposed DDAN can well
align the distributions of various source domains, and significantly
outperforms all existing domain generalization approaches.
Related papers
- SUG: Single-dataset Unified Generalization for 3D Point Cloud
Classification [44.27324696068285]
We propose a Single-dataset Unified Generalization (SUG) framework to alleviate the unforeseen domain differences faced by a well-trained source model.
Specifically, we first design a Multi-grained Sub-domain Alignment (MSA) method, which can constrain the learned representations to be domain-agnostic and discriminative.
Then, a Sample-level Domain-aware Attention (SDA) strategy is presented, which can selectively enhance easy-to-adapt samples from different sub-domains.
arXiv Detail & Related papers (2023-05-16T04:36:04Z) - Domain Generalization through the Lens of Angular Invariance [44.76809026901016]
Domain generalization (DG) aims at generalizing a classifier trained on multiple source domains to an unseen target domain with domain shift.
We propose a novel deep DG method called Angular Invariance Domain Generalization Network (AIDGN)
arXiv Detail & Related papers (2022-10-28T02:05:38Z) - Domain generalization Person Re-identification on Attention-aware
multi-operation strategery [8.90472129039969]
Domain generalization person re-identification (DG Re-ID) aims to directly deploy a model trained on the source domain to the unseen target domain with good generalization.
In the existing DG Re-ID methods, invariant operations are effective in extracting domain generalization features.
An Attention-aware Multi-operation Strategery (AMS) for DG Re-ID is proposed to extract more generalized features.
arXiv Detail & Related papers (2022-10-19T09:18:46Z) - Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
Domain Generalization aims to safely transfer a model to unseen target domains.
AdaODM adaptively modifies the source model at test time for different target domains.
Results show AdaODM stably improves the generalization capacity on unseen domains.
arXiv Detail & Related papers (2022-08-03T11:51:11Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
We introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions.
We harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space.
Experiments on four standard Domain Generalization benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.
arXiv Detail & Related papers (2022-03-24T11:54:59Z) - A Novel Mix-normalization Method for Generalizable Multi-source Person
Re-identification [49.548815417844786]
Person re-identification (Re-ID) has achieved great success in the supervised scenario.
It is difficult to directly transfer the supervised model to arbitrary unseen domains due to the model overfitting to the seen source domains.
We propose MixNorm, which consists of domain-aware mix-normalization (DMN) and domain-ware center regularization (DCR)
arXiv Detail & Related papers (2022-01-24T18:09:38Z) - META: Mimicking Embedding via oThers' Aggregation for Generalizable
Person Re-identification [68.39849081353704]
Domain generalizable (DG) person re-identification (ReID) aims to test across unseen domains without access to the target domain data at training time.
This paper presents a new approach called Mimicking Embedding via oThers' Aggregation (META) for DG ReID.
arXiv Detail & Related papers (2021-12-16T08:06:50Z) - Discriminative Domain-Invariant Adversarial Network for Deep Domain
Generalization [33.84004077585957]
We propose a discriminative domain-invariant adversarial network (DDIAN) for domain generalization.
DDIAN achieves better prediction on unseen target data during training compared to state-of-the-art domain generalization approaches.
arXiv Detail & Related papers (2021-08-20T04:24:12Z) - Adversarial Dual Distinct Classifiers for Unsupervised Domain Adaptation [67.83872616307008]
Unversarial Domain adaptation (UDA) attempts to recognize the unlabeled target samples by building a learning model from a differently-distributed labeled source domain.
In this paper, we propose a novel Adrial Dual Distincts Network (AD$2$CN) to align the source and target domain data distribution simultaneously with matching task-specific category boundaries.
To be specific, a domain-invariant feature generator is exploited to embed the source and target data into a latent common space with the guidance of discriminative cross-domain alignment.
arXiv Detail & Related papers (2020-08-27T01:29:10Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.