Fully tunable longitudinal spin-photon interactions in Si and Ge quantum
dots
- URL: http://arxiv.org/abs/2203.17163v1
- Date: Thu, 31 Mar 2022 16:36:53 GMT
- Title: Fully tunable longitudinal spin-photon interactions in Si and Ge quantum
dots
- Authors: Stefano Bosco, Pasquale Scarlino, Jelena Klinovaja, Daniel Loss
- Abstract summary: We show that large longitudinal interactions emerge naturally in state-of-the-art hole spin qubits.
We propose realistic protocols to measure these interactions and to implement fast and high-fidelity two-qubit entangling gates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spin qubits in silicon and germanium quantum dots are promising platforms for
quantum computing, but entangling spin qubits over micrometer distances remains
a critical challenge. Current prototypical architectures maximize transversal
interactions between qubits and microwave resonators, where the spin state is
flipped by nearly resonant photons. However, these interactions cause
back-action on the qubit, that yield unavoidable residual qubit-qubit couplings
and significantly affect the gate fidelity. Strikingly, residual couplings
vanish when spin-photon interactions are longitudinal and photons couple to the
phase of the qubit. We show that large longitudinal interactions emerge
naturally in state-of-the-art hole spin qubits. These interactions are fully
tunable and can be parametrically modulated by external oscillating electric
fields. We propose realistic protocols to measure these interactions and to
implement fast and high-fidelity two-qubit entangling gates. These protocols
work also at high temperatures, paving the way towards the implementation of
large-scale quantum processors.
Related papers
- Spectral signature of high-order photon processes mediated by
Cooper-pair pairing [0.0]
Superconducting circuits have almost exclusively operated in the regime where phase fluctuations are smaller than unity.
Superconducting circuits have almost exclusively operated in the regime where phase fluctuations are smaller than unity.
This work explores a new regime of high-order photon interactions in microwave quantum optics, with applications ranging from multi-photon quantum logic to the study of highly correlated microwave radiation.
arXiv Detail & Related papers (2023-12-22T21:29:25Z) - Two-qubit logic between distant spins in silicon [0.5561396798949833]
In this work, we utilize a superconducting resonator to facilitate a coherent interaction between two semiconductor spin qubits 250 $mu$m apart.
Results hold promise for scalable networks of spin qubit modules on a chip.
arXiv Detail & Related papers (2023-10-25T17:37:03Z) - Dual epitaxial telecom spin-photon interfaces with correlated long-lived
coherence [0.0]
Trivalent erbium dopants emerge as a compelling candidate with their telecom C band emission and shielded 4f intra-shell spin-optical transitions.
We demonstrate dual erbium telecom spin-photon interfaces in an epitaxial thin-film platform via wafer-scale bottom-up synthesis.
arXiv Detail & Related papers (2023-10-11T01:40:04Z) - Methods for transverse and longitudinal spin-photon coupling in silicon
quantum dots with intrinsic spin-orbit effect [0.32301042014102566]
This paper examines the theory of both transverse and longitudinal spin-photon coupling.
We propose a method of coupling which uses the intrinsic spin-orbit interaction arising from orbital degeneracies in SiMOS qubits.
We also evaluate the feasibility of a longitudinal coupling driven by an AC modulation on the qubit.
arXiv Detail & Related papers (2023-08-24T08:04:28Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Hole spin qubits in thin curved quantum wells [0.0]
Hole spin qubits are frontrunner platforms for scalable quantum computers.
Fastest spin qubits to date are defined in long quantum dots with confinement directions.
In these systems the lifetime of the qubit is strongly limited by charge noise.
We propose a different, scalable qubit design, compatible with planar CMOS technology.
arXiv Detail & Related papers (2022-04-18T08:34:38Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.