Quantum interference in asymmetric superconducting nanowire loops
- URL: http://arxiv.org/abs/2203.17199v1
- Date: Thu, 31 Mar 2022 17:22:19 GMT
- Title: Quantum interference in asymmetric superconducting nanowire loops
- Authors: J. Hudis, J. Cochran, G. Franco-Rivera, C.S. Guzman IV, E. Lochner, P.
Schlottman, P. Xiong and I. Chiorescu
- Abstract summary: Superconducting electronic devices are based on the modulation of the supercurrent in superconducting loops.
The effects of asymmetries in such devices remain under-explored and poorly understood.
A model considering the length and electronic cross-section asymmetries in the loop provides a quantitative account of the observations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Macroscopic phase coherence in superconductors enables quantum interference
and phase manipulation at realistic device length scales. Numerous
superconducting electronic devices are based on the modulation of the
supercurrent in superconducting loops. While the overall behavior of symmetric
superconducting loops have been studied, the effects of asymmetries in such
devices remain under-explored and poorly understood. Here we report on an
experimental and theoretical study of the flux modulation of the persistent
current in a doubly-connected asymmetric aluminum nanowire loop. A model
considering the length and electronic cross-section asymmetries in the loop
provides a quantitative account of the observations. Comparison with
experiments give essential parameters such as persistent and critical currents
as well as the amount of asymmetry which can provide feedback into the design
of superconducting quantum devices.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Measuring kinetic inductance and superfluid stiffness of two-dimensional superconductors using high-quality transmission-line resonators [1.9343861862849647]
We demonstrate a new technique that employs high-quality-factor superconducting resonators to measure the kinetic inductance.
We analyze the equivalent circuit model to extract the kinetic inductance, super stiffness, penetration depth, and ratio of imaginary and real parts of the complex conductivity.
Our method will be useful for practitioners in the growing fields of superconducting physics, materials science, and quantum sensing.
arXiv Detail & Related papers (2024-07-13T15:26:00Z) - Quantum dynamics of superconductor-quantum dot-superconductor Josephson
junctions [0.0]
We study the self-consistent quantization of a capacitively-shunted S-QD-S junction via path-integral formulation.
Results are important to understand future experiments and quantum devices incorporating S-QD-S junctions in arbitrary impedance environments.
arXiv Detail & Related papers (2024-02-15T21:14:59Z) - Observing dynamical phases of BCS superconductors in a cavity QED
simulator [0.0]
In conventional superconductors, electrons with opposite momenta bind into Cooper pairs due to an attractive interaction mediated by phonons in the material.
Superconductivity naturally emerges at thermal equilibrium, but can also emerge out of equilibrium when the system's parameters are abruptly changed.
Here we realize an alternate way to generate the proposed dynamical phases using cavity quantum electrodynamics.
arXiv Detail & Related papers (2023-05-31T18:00:03Z) - Theory of superconducting qubits beyond the lumped element approximation [0.0]
We develop a formalism that treats Josephson couplings non-perturbatively.
We show that Fermi sea effects can contribute to the effective capacitance of small charge qubits.
We also provide a microscopic wavefunction of superconducting Schrodinger cats suitable for computing the number of entangled electrons.
arXiv Detail & Related papers (2022-11-20T02:51:37Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.