論文の概要: Improved Relation Networks for End-to-End Speaker Verification and
Identification
- arxiv url: http://arxiv.org/abs/2203.17218v1
- Date: Thu, 31 Mar 2022 17:44:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-01 16:47:33.616460
- Title: Improved Relation Networks for End-to-End Speaker Verification and
Identification
- Title(参考訳): エンドツーエンド話者認証と識別のための改善された関係ネットワーク
- Authors: Ashutosh Chaubey, Sparsh Sinha, Susmita Ghose
- Abstract要約: 話者識別システムは、少数のサンプルが与えられた一連の登録話者の中から話者を識別する。
話者検証と少数ショット話者識別のための改良された関係ネットワークを提案する。
話者検証におけるプロトタイプネットワークの利用に触発されて、トレーニングセットに存在するすべての話者のうち、現在のエピソードのサンプルを分類するようにモデルを訓練する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Speaker identification systems in a real-world scenario are tasked to
identify a speaker amongst a set of enrolled speakers given just a few samples
for each enrolled speaker. This paper demonstrates the effectiveness of
meta-learning and relation networks for this use case. We propose improved
relation networks for speaker verification and few-shot (unseen) speaker
identification. The use of relation networks facilitates joint training of the
frontend speaker encoder and the backend model. Inspired by the use of
prototypical networks in speaker verification and to increase the
discriminability of the speaker embeddings, we train the model to classify
samples in the current episode amongst all speakers present in the training
set. Furthermore, we propose a new training regime for faster model convergence
by extracting more information from a given meta-learning episode with
negligible extra computation. We evaluate the proposed techniques on VoxCeleb,
SITW and VCTK datasets on the tasks of speaker verification and unseen speaker
identification. The proposed approach outperforms the existing approaches
consistently on both tasks.
- Abstract(参考訳): 実世界のシナリオにおける話者識別システムは、登録された話者ごとに数個のサンプルが与えられた一連の登録された話者の中から話者を識別する。
本稿では,このユースケースにおけるメタラーニングと関係ネットワークの有効性を示す。
話者検証と少数ショット話者識別のための改良された関係ネットワークを提案する。
関連ネットワークの利用は、フロントエンドスピーカーエンコーダとバックエンドモデルの合同トレーニングを促進する。
話者照合における原型的ネットワークの使用と話者埋め込みの識別性の向上に着想を得て,学習セットに存在するすべての話者のうち,現在のエピソードのサンプルを分類するモデルを訓練した。
さらに,与えられたメタ学習エピソードからさらに多くの情報を抽出することで,より高速なモデル収束のための新しい学習手法を提案する。
本稿では,VoxCeleb,SITW,VCTKの各データセットに対して,話者検証と未知話者識別のタスクに基づいて提案手法を評価する。
提案手法は、既存のアプローチを両タスクで一貫して上回る。
関連論文リスト
- Unsupervised Speaker Diarization in Distributed IoT Networks Using Federated Learning [2.3076690318595676]
本稿では,ネットワーク型IoTオーディオデバイスを対象とした,計算効率のよい分散話者ダイアリゼーションフレームワークを提案する。
フェデレートラーニングモデルは、トレーニングのための大規模なオーディオデータベースを必要とせずに、会話に参加する参加者を特定することができる。
話者埋め込みのコサイン類似性に依存するフェデレートラーニングモデルに対して、教師なしオンライン更新機構を提案する。
論文 参考訳(メタデータ) (2024-04-16T18:40:28Z) - Improving Speaker Diarization using Semantic Information: Joint Pairwise
Constraints Propagation [53.01238689626378]
本稿では,話者ダイアリゼーションシステムにおける意味情報を活用する新しい手法を提案する。
音声言語理解モジュールを導入し、話者関連意味情報を抽出する。
本稿では,これらの制約を話者ダイアリゼーションパイプラインに統合する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-09-19T09:13:30Z) - Exploring Speaker-Related Information in Spoken Language Understanding
for Better Speaker Diarization [7.673971221635779]
多人数会議におけるセマンティックコンテンツから話者関連情報を抽出する手法を提案する。
AISHELL-4とAliMeetingの2つのデータセットを用いた実験により,本手法は音響のみの話者ダイアリゼーションシステムよりも一貫した改善を実現することが示された。
論文 参考訳(メタデータ) (2023-05-22T11:14:19Z) - End-to-End Diarization for Variable Number of Speakers with Local-Global
Networks and Discriminative Speaker Embeddings [66.50782702086575]
本論文では,単一チャンネルの音声記録から会議ダイアリゼーションを行う,エンドツーエンドのディープネットワークモデルを提案する。
提案システムは,可変数の置換不変なクロスエントロピーに基づく損失関数を用いて,未知数の話者とのミーティングを処理するように設計されている。
論文 参考訳(メタデータ) (2021-05-05T14:55:29Z) - Streaming Multi-talker Speech Recognition with Joint Speaker
Identification [77.46617674133556]
SURITは、音声認識と話者識別の両方のバックボーンとして、リカレントニューラルネットワークトランスデューサ(RNN-T)を採用しています。
Librispeechから派生したマルチストーカーデータセットであるLibrispeechデータセットに関するアイデアを検証し、奨励的な結果を提示した。
論文 参考訳(メタデータ) (2021-04-05T18:37:33Z) - Augmentation adversarial training for self-supervised speaker
recognition [49.47756927090593]
話者ラベルのない頑健な話者認識モデルを訓練する。
VoxCelebとVOiCESデータセットの実験は、セルフスーパービジョンを使用した以前の作業よりも大幅に改善されている。
論文 参考訳(メタデータ) (2020-07-23T15:49:52Z) - Joint Speaker Counting, Speech Recognition, and Speaker Identification
for Overlapped Speech of Any Number of Speakers [38.3469744871394]
エンドツーエンドの話者分散音声認識モデルを提案する。
重複した音声における話者カウント、音声認識、話者識別を統一する。
論文 参考訳(メタデータ) (2020-06-19T02:05:18Z) - Semi-supervised Learning for Multi-speaker Text-to-speech Synthesis
Using Discrete Speech Representation [125.59372403631006]
マルチ話者テキスト音声(TTS)のための半教師付き学習手法を提案する。
マルチスピーカTTSモデルは、離散音声表現を備えたエンコーダデコーダフレームワークを用いて、未転写音声から学習することができる。
提案した半教師あり学習手法は,音声データの一部がうるさい場合にも有効であることがわかった。
論文 参考訳(メタデータ) (2020-05-16T15:47:11Z) - Speaker Diarization with Lexical Information [59.983797884955]
本研究では,音声認識による語彙情報を活用した話者ダイアリゼーション手法を提案する。
本稿では,話者クラスタリングプロセスに単語レベルの話者回転確率を組み込んだ話者ダイアリゼーションシステムを提案し,全体的なダイアリゼーション精度を向上させる。
論文 参考訳(メタデータ) (2020-04-13T17:16:56Z) - Multi-task Learning for Speaker Verification and Voice Trigger Detection [18.51531434428444]
両タスクを共同で行うための1つのネットワークのトレーニングについて検討する。
本研究では,数千時間のラベル付きトレーニングデータを用いてモデルを訓練する大規模実証的研究を提案する。
以上の結果から,学習表現において,両話者情報を符号化できることが示唆された。
論文 参考訳(メタデータ) (2020-01-26T21:19:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。