A Survey of Robust 3D Object Detection Methods in Point Clouds
- URL: http://arxiv.org/abs/2204.00106v1
- Date: Thu, 31 Mar 2022 21:41:32 GMT
- Title: A Survey of Robust 3D Object Detection Methods in Point Clouds
- Authors: Walter Zimmer, Emec Ercelik, Xingcheng Zhou, Xavier Jair Diaz Ortiz
and Alois Knoll
- Abstract summary: We describe novel data augmentation methods, sampling strategies, activation functions, attention mechanisms, and regularization methods.
We evaluate novel 3D object detectors on the KITTI, nuScenes, and dataset.
We mention the current challenges in 3D object detection in LiDAR point clouds and list some open issues.
- Score: 2.1655448059430222
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The purpose of this work is to review the state-of-the-art LiDAR-based 3D
object detection methods, datasets, and challenges. We describe novel data
augmentation methods, sampling strategies, activation functions, attention
mechanisms, and regularization methods. Furthermore, we list recently
introduced normalization methods, learning rate schedules and loss functions.
Moreover, we also cover advantages and limitations of 10 novel autonomous
driving datasets. We evaluate novel 3D object detectors on the KITTI, nuScenes,
and Waymo dataset and show their accuracy, speed, and robustness. Finally, we
mention the current challenges in 3D object detection in LiDAR point clouds and
list some open issues.
Related papers
- Open-Set 3D object detection in LiDAR data as an Out-of-Distribution problem [6.131026007721572]
3D Object Detection from LiDAR data has achieved industry-ready performance in controlled environments.
Our work redefines the open-set 3D Object Detection problem in LiDAR data as an Out-Of-Distribution (OOD) problem to detect outlier objects.
arXiv Detail & Related papers (2024-10-31T09:29:55Z) - STONE: A Submodular Optimization Framework for Active 3D Object Detection [20.54906045954377]
Key requirement for training an accurate 3D object detector is the availability of a large amount of LiDAR-based point cloud data.
This paper proposes a unified active 3D object detection framework, for greatly reducing the labeling cost of training 3D object detectors.
arXiv Detail & Related papers (2024-10-04T20:45:33Z) - Find n' Propagate: Open-Vocabulary 3D Object Detection in Urban Environments [67.83787474506073]
We tackle the limitations of current LiDAR-based 3D object detection systems.
We introduce a universal textscFind n' Propagate approach for 3D OV tasks.
We achieve up to a 3.97-fold increase in Average Precision (AP) for novel object classes.
arXiv Detail & Related papers (2024-03-20T12:51:30Z) - Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted
Sample Selection [40.005411891186874]
This paper introduces a new training sample selection method that utilizes point cloud distribution for anchor sample quality measurement.
Experimental results demonstrate that the application of PASS elevates the average precision of anchor-based LiDAR 3D object detectors to a novel state-of-the-art.
arXiv Detail & Related papers (2024-03-04T12:20:40Z) - 3D Object Detection and High-Resolution Traffic Parameters Extraction
Using Low-Resolution LiDAR Data [14.142956899468922]
This study proposes an innovative framework that alleviates the need for multiple LiDAR systems and simplifies the laborious 3D annotation process.
Using the 2D bounding box detection and extracted height information, this study is able to generate 3D bounding boxes automatically without human intervention.
arXiv Detail & Related papers (2024-01-13T01:22:20Z) - Robustness-Aware 3D Object Detection in Autonomous Driving: A Review and Outlook [19.539295469044813]
This study emphasizes the importance of robustness, alongside accuracy and latency, in evaluating perception systems under practical scenarios.
Our work presents an extensive survey of camera-only, LiDAR-only, and multi-modal 3D object detection algorithms, thoroughly evaluating their trade-off between accuracy, latency, and robustness.
Among these, multi-modal 3D detection approaches exhibit superior robustness, and a novel taxonomy is introduced to reorganize the literature for enhanced clarity.
arXiv Detail & Related papers (2024-01-12T12:35:45Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
This paper addresses the limitations of current datasets for 3D vision tasks in terms of accuracy, size, realism, and suitable imaging modalities for photometrically challenging objects.
We propose a novel annotation and acquisition pipeline that enhances existing 3D perception and 6D object pose datasets.
arXiv Detail & Related papers (2023-08-21T10:38:32Z) - DetZero: Rethinking Offboard 3D Object Detection with Long-term
Sequential Point Clouds [55.755450273390004]
Existing offboard 3D detectors always follow a modular pipeline design to take advantage of unlimited sequential point clouds.
We have found that the full potential of offboard 3D detectors is not explored mainly due to two reasons: (1) the onboard multi-object tracker cannot generate sufficient complete object trajectories, and (2) the motion state of objects poses an inevitable challenge for the object-centric refining stage.
To tackle these problems, we propose a novel paradigm of offboard 3D object detection, named DetZero.
arXiv Detail & Related papers (2023-06-09T16:42:00Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes [54.239416488865565]
We propose a fast single-stage 3D object detection method for LIDAR data.
The core novelty of our method is a fast, single-pass architecture that both detects objects in 3D and estimates their shapes.
We find that our proposed method achieves state-of-the-art results by 5% on object detection in ScanNet scenes, and it gets top results by 3.4% in the Open dataset.
arXiv Detail & Related papers (2020-04-02T17:48:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.