STONE: A Submodular Optimization Framework for Active 3D Object Detection
- URL: http://arxiv.org/abs/2410.03918v2
- Date: Fri, 1 Nov 2024 05:23:35 GMT
- Title: STONE: A Submodular Optimization Framework for Active 3D Object Detection
- Authors: Ruiyu Mao, Sarthak Kumar Maharana, Rishabh K Iyer, Yunhui Guo,
- Abstract summary: Key requirement for training an accurate 3D object detector is the availability of a large amount of LiDAR-based point cloud data.
This paper proposes a unified active 3D object detection framework, for greatly reducing the labeling cost of training 3D object detectors.
- Score: 20.54906045954377
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D object detection is fundamentally important for various emerging applications, including autonomous driving and robotics. A key requirement for training an accurate 3D object detector is the availability of a large amount of LiDAR-based point cloud data. Unfortunately, labeling point cloud data is extremely challenging, as accurate 3D bounding boxes and semantic labels are required for each potential object. This paper proposes a unified active 3D object detection framework, for greatly reducing the labeling cost of training 3D object detectors. Our framework is based on a novel formulation of submodular optimization, specifically tailored to the problem of active 3D object detection. In particular, we address two fundamental challenges associated with active 3D object detection: data imbalance and the need to cover the distribution of the data, including LiDAR-based point cloud data of varying difficulty levels. Extensive experiments demonstrate that our method achieves state-of-the-art performance with high computational efficiency compared to existing active learning methods. The code is available at https://github.com/RuiyuM/STONE.
Related papers
- Training an Open-Vocabulary Monocular 3D Object Detection Model without 3D Data [57.53523870705433]
We propose a novel open-vocabulary monocular 3D object detection framework, dubbed OVM3D-Det.
OVM3D-Det does not require high-precision LiDAR or 3D sensor data for either input or generating 3D bounding boxes.
It employs open-vocabulary 2D models and pseudo-LiDAR to automatically label 3D objects in RGB images, fostering the learning of open-vocabulary monocular 3D detectors.
arXiv Detail & Related papers (2024-11-23T21:37:21Z) - Diff3DETR:Agent-based Diffusion Model for Semi-supervised 3D Object Detection [33.58208166717537]
3D object detection is essential for understanding 3D scenes.
Recent developments in semi-supervised methods seek to mitigate this problem by employing a teacher-student framework to generate pseudo-labels for unlabeled point clouds.
We introduce an Agent-based Diffusion Model for Semi-supervised 3D Object Detection (Diff3DETR)
arXiv Detail & Related papers (2024-08-01T05:04:22Z) - SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics [0.7373617024876725]
In autonomous driving, 3D object detection provides more precise information for downstream tasks, including path planning and motion estimation.
We propose SeSame: a method aimed at enhancing semantic information in existing LiDAR-only based 3D object detection.
Experiments demonstrate the effectiveness of our method with performance improvements on the KITTI object detection benchmark.
arXiv Detail & Related papers (2024-03-11T08:17:56Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
We propose Contextualized Multi-Stage Refinement for 3D Object Detection (CMR3D) framework.
Our framework takes a 3D scene as input and strives to explicitly integrate useful contextual information of the scene.
In addition to 3D object detection, we investigate the effectiveness of our framework for the problem of 3D object counting.
arXiv Detail & Related papers (2022-09-13T05:26:09Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Semi-supervised 3D Object Detection via Adaptive Pseudo-Labeling [18.209409027211404]
3D object detection is an important task in computer vision.
Most existing methods require a large number of high-quality 3D annotations, which are expensive to collect.
We propose a novel semi-supervised framework based on pseudo-labeling for outdoor 3D object detection tasks.
arXiv Detail & Related papers (2021-08-15T02:58:43Z) - High-level camera-LiDAR fusion for 3D object detection with machine
learning [0.0]
This paper tackles the 3D object detection problem, which is of vital importance for applications such as autonomous driving.
It uses a Machine Learning pipeline on a combination of monocular camera and LiDAR data to detect vehicles in the surrounding 3D space of a moving platform.
Our results demonstrate an efficient and accurate inference on a validation set, achieving an overall accuracy of 87.1%.
arXiv Detail & Related papers (2021-05-24T01:57:34Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds.
Our ST3D achieves state-of-the-art performance on all evaluated datasets and even surpasses fully supervised results on KITTI 3D object detection benchmark.
arXiv Detail & Related papers (2021-03-09T10:51:24Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - Weakly Supervised 3D Object Detection from Point Clouds [27.70180601788613]
3D object detection aims to detect and localize the 3D bounding boxes of objects belonging to specific classes.
Existing 3D object detectors rely on annotated 3D bounding boxes during training, while these annotations could be expensive to obtain and only accessible in limited scenarios.
We propose VS3D, a framework for weakly supervised 3D object detection from point clouds without using any ground truth 3D bounding box for training.
arXiv Detail & Related papers (2020-07-28T03:30:11Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
We propose SESS, a self-ensembling semi-supervised 3D object detection framework. Specifically, we design a thorough perturbation scheme to enhance generalization of the network on unlabeled and new unseen data.
Our SESS achieves competitive performance compared to the state-of-the-art fully-supervised method by using only 50% labeled data.
arXiv Detail & Related papers (2019-12-26T08:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.