論文の概要: Bridging the Gap between Classification and Localization for Weakly
Supervised Object Localization
- arxiv url: http://arxiv.org/abs/2204.00220v1
- Date: Fri, 1 Apr 2022 05:49:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-04 14:44:01.675484
- Title: Bridging the Gap between Classification and Localization for Weakly
Supervised Object Localization
- Title(参考訳): 弱教師付き物体定位における分類と局在のギャップの橋渡し
- Authors: Eunji Kim, Siwon Kim, Jungbeom Lee, Hyunwoo Kim, Sungroh Yoon
- Abstract要約: 弱教師付きオブジェクトローカライゼーションは、画像レベルラベルのような弱い監督しか持たない対象領域を所定の画像内に見つけることを目的としている。
入力特徴とクラス固有の重みの方向のずれから,分類と局所化のギャップを見いだす。
本稿では,特徴方向をクラス固有の重みに整合させてギャップを埋める手法を提案する。
- 参考スコア(独自算出の注目度): 39.63778214094173
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Weakly supervised object localization aims to find a target object region in
a given image with only weak supervision, such as image-level labels. Most
existing methods use a class activation map (CAM) to generate a localization
map; however, a CAM identifies only the most discriminative parts of a target
object rather than the entire object region. In this work, we find the gap
between classification and localization in terms of the misalignment of the
directions between an input feature and a class-specific weight. We demonstrate
that the misalignment suppresses the activation of CAM in areas that are less
discriminative but belong to the target object. To bridge the gap, we propose a
method to align feature directions with a class-specific weight. The proposed
method achieves a state-of-the-art localization performance on the CUB-200-2011
and ImageNet-1K benchmarks.
- Abstract(参考訳): 弱教師付きオブジェクトローカライゼーションは、画像レベルラベルのような弱い監督しか持たない対象領域を所定の画像内に見つけることを目的としている。
既存のほとんどのメソッドでは、クラスアクティベーションマップ(CAM)を使用してローカライズマップを生成するが、CAMは対象の領域全体ではなく、対象の最も識別性の高い部分のみを特定する。
本研究では,入力特徴量とクラス固有重みの方向の不一致の観点から,分類と局所化のギャップを見出した。
本研究は,識別度が低いが対象対象物に属する領域におけるCAMの活性化を抑制することを実証する。
このギャップを埋めるために,特徴方向をクラス固有の重みで整列する方法を提案する。
提案手法は, CUB-200-2011 および ImageNet-1K ベンチマーク上での最先端のローカライゼーション性能を実現する。
関連論文リスト
- Spatial Structure Constraints for Weakly Supervised Semantic
Segmentation [100.0316479167605]
クラスアクティベーションマップ(CAM)は、オブジェクトの最も識別性の高い部分のみを見つけることができる。
注意伸縮の余剰なオブジェクトの過剰な活性化を軽減するために,弱い教師付きセマンティックセマンティックセグメンテーションのための空間構造制約(SSC)を提案する。
提案手法は,PASCAL VOC 2012とCOCOデータセットでそれぞれ72.7%,47.0%mIoUを達成した。
論文 参考訳(メタデータ) (2024-01-20T05:25:25Z) - Bagging Regional Classification Activation Maps for Weakly Supervised
Object Localization [11.25759292976175]
BagCAMsは、ローカライゼーションタスクのためのよく訓練された分類器をより良く投影するためのプラグアンドプレイ機構である。
我々のBagCAMは、地域ローカライザの集合を定義するために、提案した地域ローカライザ生成戦略を採用する。
実験により,提案したBagCAMを用いることで,ベースラインWSOL法の性能が向上することが示唆された。
論文 参考訳(メタデータ) (2022-07-16T03:03:01Z) - Saliency Guided Inter- and Intra-Class Relation Constraints for Weakly
Supervised Semantic Segmentation [66.87777732230884]
本稿では,活性化対象領域の拡大を支援するために,Salliency Guided Inter-およびIntra-Class Relation Constrained (I$2$CRC) フレームワークを提案する。
また,オブジェクトガイド付きラベルリファインメントモジュールを導入し,セグメンテーション予測と初期ラベルをフル活用し,優れた擬似ラベルを得る。
論文 参考訳(メタデータ) (2022-06-20T03:40:56Z) - Anti-Adversarially Manipulated Attributions for Weakly Supervised
Semantic Segmentation and Object Localization [31.69344455448125]
本稿では,最終ソフトマックス層やシグモイド層の前に分類器が生成する分類スコアを増やすために操作した画像の属性マップを提案する。
この操作は対逆的な方法で実現され、元の画像は対逆攻撃で使用されるものと反対方向に画素勾配に沿って摂動される。
さらに,対象物に関係のない領域の不正な帰属と,対象物の小さな領域への過剰な帰属の集中を抑制する新たな正規化手法を導入する。
論文 参考訳(メタデータ) (2022-04-11T06:18:02Z) - Weakly Supervised Object Localization as Domain Adaption [19.854125742336688]
弱教師付きオブジェクトローカライゼーション(WSOL)は、画像レベルの分類マスクの監督のみでオブジェクトをローカライズすることに焦点を当てる。
従来のWSOL手法の多くは、MIL(Multi-instance Learning)機構を用いて分類構造に基づいてオブジェクトをローカライズする分類活性化マップ(CAM)に従っている。
この研究は、WSOLをドメイン適応(DA)タスクとしてモデル化する、新しい視点を提供する。そこでは、ソース/イメージドメインでトレーニングされたスコア推定器がターゲット/ピクセルドメイン上でテストされ、オブジェクトを見つける。
論文 参考訳(メタデータ) (2022-03-03T13:50:22Z) - Anti-Adversarially Manipulated Attributions for Weakly and
Semi-Supervised Semantic Segmentation [24.4472594401663]
AdvCAMは、分類スコアを増やすために操作される画像の属性マップである。
この地域は当初差別的ではないと見なされ、その後の分類に関与した。
68.0 と 76.9 の mIoU をそれぞれ弱かつ半教師付きセマンティックセグメンテーションで実現する。
論文 参考訳(メタデータ) (2021-03-16T07:39:06Z) - Instance Localization for Self-supervised Detection Pretraining [68.24102560821623]
インスタンスローカリゼーションと呼ばれる,新たな自己監視型プリテキストタスクを提案する。
境界ボックスを事前学習に組み込むことで、より優れたタスクアライメントとアーキテクチャアライメントが促進されることを示す。
実験結果から, オブジェクト検出のための最先端の転送学習結果が得られた。
論文 参考訳(メタデータ) (2021-02-16T17:58:57Z) - Inter-Image Communication for Weakly Supervised Localization [77.2171924626778]
弱教師付きローカライゼーションは、画像レベルの監督のみを使用して対象対象領域を見つけることを目的としている。
我々は,より正確な物体位置を学習するために,異なる物体間の画素レベルの類似性を活用することを提案する。
ILSVRC検証セット上でトップ1のローカライズ誤差率45.17%を達成する。
論文 参考訳(メタデータ) (2020-08-12T04:14:11Z) - Weakly-Supervised Semantic Segmentation via Sub-category Exploration [73.03956876752868]
我々は、オブジェクトの他の部分に注意を払うために、ネットワークを強制する単純で効果的なアプローチを提案する。
具体的には、画像の特徴をクラスタリングして、アノテーション付き親クラスごとに擬似サブカテゴリラベルを生成する。
提案手法の有効性を検証し,提案手法が最先端手法に対して良好に機能することを示す。
論文 参考訳(メタデータ) (2020-08-03T20:48:31Z) - Rethinking the Route Towards Weakly Supervised Object Localization [28.90792512056726]
弱教師付きオブジェクトローカライゼーションは、クラスに依存しないオブジェクトローカライゼーションとオブジェクト分類の2つの部分に分けられるべきである。
クラス非依存のオブジェクトローカライゼーションでは、クラス非依存のメソッドを使用してノイズの多い擬似アノテーションを生成し、クラスラベルなしで境界ボックスのレグレッションを実行する必要がある。
我々のPSOLモデルは、微調整なしで異なるデータセット間で良好な転送性を持つ。
論文 参考訳(メタデータ) (2020-02-26T08:54:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。