Constructing all qutrit controlled Clifford+T gates in Clifford+T
- URL: http://arxiv.org/abs/2204.00552v1
- Date: Fri, 1 Apr 2022 16:21:43 GMT
- Title: Constructing all qutrit controlled Clifford+T gates in Clifford+T
- Authors: Lia Yeh, John van de Wetering
- Abstract summary: We show how to construct any qutrit multiple-controlled Clifford+T unitary using just Clifford+T gates.
With our results we can construct ancilla-free implementations of multiple-controlled T gates as well as all versions of the qutrit multiple-controlled Toffoli.
As an application of our results, we provide a procedure to implement any ternary classical reversible function on $n$ trits as an ancilla-free qutrit unitary.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For a number of useful quantum circuits, qudit constructions have been found
which reduce resource requirements compared to the best known or best possible
qubit construction. However, many of the necessary qutrit gates in these
constructions have never been explicitly and efficiently constructed in a
fault-tolerant manner. We show how to exactly and unitarily construct any
qutrit multiple-controlled Clifford+T unitary using just Clifford+T gates and
without using ancillae. The T-count to do so is polynomial in the number of
controls $k$, scaling as $O(k^{3.585})$. With our results we can construct
ancilla-free Clifford+T implementations of multiple-controlled T gates as well
as all versions of the qutrit multiple-controlled Toffoli, while the analogous
results for qubits are impossible. As an application of our results, we provide
a procedure to implement any ternary classical reversible function on $n$ trits
as an ancilla-free qutrit unitary using $O(3^n n^{3.585})$ T gates.
Related papers
- Multi-qutrit exact synthesis [0.0]
We present an exact synthesis algorithm for qutrit unitaries in $mathcalU_3n(mathbbZ[/3,e2pi i/3])$ over the Clifford$+T$ gate set with at most one ancilla.
This, in particular, gives an exact synthesis algorithm of single-qutrit Clifford$+mathcalD$ over the multi-qutrit Clifford$+T$ gate set with at most two ancillas.
arXiv Detail & Related papers (2024-05-13T19:48:10Z) - Synthesizing Toffoli-optimal quantum circuits for arbitrary multi-qubit
unitaries [0.0]
We study the Clifford+Toffoli universal fault-tolerant gate set.
We develop Toffoli-count optimal synthesis algorithms for both approximately and exactly implementable multi-qubit unitaries.
arXiv Detail & Related papers (2024-01-17T03:53:37Z) - Optimising quantum circuits is generally hard [0.0]
We find that many gate optimisation problems for approximately universal quantum circuits are NP-hard.
We show that for any non-Clifford gate $G$ it is NP-hard to optimise the $G$-count over the Clifford+$G$ gate set.
arXiv Detail & Related papers (2023-09-12T09:35:23Z) - Simulation of IBM's kicked Ising experiment with Projected Entangled
Pair Operator [71.10376783074766]
We perform classical simulations of the 127-qubit kicked Ising model, which was recently emulated using a quantum circuit with error mitigation.
Our approach is based on the projected entangled pair operator (PEPO) in the Heisenberg picture.
We develop a Clifford expansion theory to compute exact expectation values and use them to evaluate algorithms.
arXiv Detail & Related papers (2023-08-06T10:24:23Z) - Qutrit metaplectic gates are a subset of Clifford+T [0.0]
A popular universal gate set for quantum computing with qubits is Clifford+T, as this can be readily implemented on many fault-tolerant architectures.
For qutrits, there is an equivalent T gate, that, like its qubit analogue, makes Clifford+T approximately universal, is injectable by a magic state, and supports magic state distillation.
It was claimed that a better gate set for qutrits might be Clifford+R, where R=diag (1,1,-1) is the metaplectic gate, as certain protocols and gates could more easily be implemented using the R gate than the T gate
arXiv Detail & Related papers (2022-02-18T15:03:47Z) - T-count and T-depth of any multi-qubit unitary [1.933681537640272]
We design provable algorithm to determine T-count of any $n$-qubit ($ngeq 1$) unitary $W$ of size $2ntimes 2n$, over the Clifford+T gate set.
Our algorithm can also be used to determine the (minimum possible) T-depth of any multi-qubit unitary.
arXiv Detail & Related papers (2021-10-19T22:16:00Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Halving the width of Toffoli based constant modular addition to n+3
qubits [69.43216268165402]
We present an arithmetic circuit performing constant modular addition having $mathcalO(n)$ depth of Toffoli gates.
This is an improvement by a factor of two compared to the width of the state-of-the-art Toffoli-based constant modular adder.
arXiv Detail & Related papers (2021-02-06T17:07:48Z) - On the realistic worst case analysis of quantum arithmetic circuits [69.43216268165402]
We show that commonly held intuitions when designing quantum circuits can be misleading.
We show that reducing the T-count can increase the total depth.
We illustrate our method on addition and multiplication circuits using ripple-carry.
arXiv Detail & Related papers (2021-01-12T21:36:16Z) - Coherent randomized benchmarking [68.8204255655161]
We show that superpositions of different random sequences rather than independent samples are used.
We show that this leads to a uniform and simple protocol with significant advantages with respect to gates that can be benchmarked.
arXiv Detail & Related papers (2020-10-26T18:00:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.