論文の概要: Extremely Low-light Image Enhancement with Scene Text Restoration
- arxiv url: http://arxiv.org/abs/2204.00630v1
- Date: Fri, 1 Apr 2022 16:10:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-08 06:29:31.967128
- Title: Extremely Low-light Image Enhancement with Scene Text Restoration
- Title(参考訳): シーンテキスト復元による超低光度画像強調
- Authors: Pohao Hsu, Che-Tsung Lin, Chun Chet Ng, Jie-Long Kew, Mei Yih Tan,
Shang-Hong Lai, Chee Seng Chan and Christopher Zach
- Abstract要約: シーンテキストを正確に復元する新しい画像強調フレームワークを提案する。
我々は,自己調整型アテンションマップ,エッジマップ,新たなテキスト検出損失を用いる。
提案手法は,画像復元,テキスト検出,テキストスポッティングにおいて,最先端の手法よりも優れている。
- 参考スコア(独自算出の注目度): 29.08094129045479
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning-based methods have made impressive progress in enhancing
extremely low-light images - the image quality of the reconstructed images has
generally improved. However, we found out that most of these methods could not
sufficiently recover the image details, for instance, the texts in the scene.
In this paper, a novel image enhancement framework is proposed to precisely
restore the scene texts, as well as the overall quality of the image
simultaneously under extremely low-light images conditions. Mainly, we employed
a self-regularised attention map, an edge map, and a novel text detection loss.
In addition, leveraging synthetic low-light images is beneficial for image
enhancement on the genuine ones in terms of text detection. The quantitative
and qualitative experimental results have shown that the proposed model
outperforms state-of-the-art methods in image restoration, text detection, and
text spotting on See In the Dark and ICDAR15 datasets.
- Abstract(参考訳): 深層学習に基づく手法は、非常に低照度な画像の高精細化に顕著な進歩を遂げている。
しかし,これらの手法のほとんどは,シーン内のテキストなど,画像の詳細を十分に回復できないことがわかった。
本稿では,極めて低照度画像条件下でのシーンテキストの精度向上と画像の全体的な品質向上を目的とした,新たな画像強調フレームワークを提案する。
主に自己正規化アテンションマップ,エッジマップ,新たなテキスト検出損失を用いた。
また, 合成低照度画像の活用は, テキスト検出における真の画像強調に有用である。
定量的・定性的な実験により,提案手法は,暗黒およびicdar15データセットにおいて,画像復元,テキスト検出,テキストスポッティングにおいて最先端手法よりも優れていることが示された。
関連論文リスト
- Text in the Dark: Extremely Low-Light Text Image Enhancement [20.631833980353704]
低照度テキスト画像は自然の場面で一般的であり、シーンテキストの検出と認識が困難である。
強調中のシーンテキスト領域に注目するエッジ対応アテンションモジュールを備えた新しいエンコーダデコーダフレームワークを提案する。
提案手法は,新しいテキスト検出とエッジ再構成の損失を利用して,低レベルなシーンテキストの特徴を強調し,テキスト抽出に成功した。
論文 参考訳(メタデータ) (2024-04-22T12:39:12Z) - ENTED: Enhanced Neural Texture Extraction and Distribution for
Reference-based Blind Face Restoration [51.205673783866146]
我々は,高品質でリアルな肖像画を復元することを目的とした,ブラインドフェイス修復のための新しいフレームワークであるENTEDを提案する。
劣化した入力画像と参照画像の間で高品質なテクスチャ特徴を伝達するために,テクスチャ抽出と分布の枠組みを利用する。
われわれのフレームワークにおけるStyleGANのようなアーキテクチャは、現実的な画像を生成するために高品質な潜伏符号を必要とする。
論文 参考訳(メタデータ) (2024-01-13T04:54:59Z) - Improving Image Restoration through Removing Degradations in Textual
Representations [60.79045963573341]
劣化画像のテキスト表現の劣化を除去し,画像復元を改善するための新たな視点を導入する。
クロスモーダル支援に対処するため,劣化した画像をテキスト表現にマッピングし,劣化を除去する手法を提案する。
特に、画像からテキストへのマッパーとテキスト復元モジュールをCLIP対応のテキストから画像へのモデルに組み込んで、ガイダンスを生成する。
論文 参考訳(メタデータ) (2023-12-28T19:18:17Z) - Enhancing Scene Text Detectors with Realistic Text Image Synthesis Using
Diffusion Models [63.99110667987318]
DiffTextは、前景のテキストと背景の本質的な特徴をシームレスにブレンドするパイプラインです。
テキストインスタンスが少なくなると、生成したテキストイメージはテキスト検出を支援する他の合成データを一貫して上回ります。
論文 参考訳(メタデータ) (2023-11-28T06:51:28Z) - Deep Image Compression Using Scene Text Quality Assessment [6.445605125467574]
一般的な方法による高い圧縮速度は、画像が劣化し、読めないテキストになる可能性がある。
圧縮画像のテキスト品質を評価するためのシーンテキスト品質評価モデルを開発した。
論文 参考訳(メタデータ) (2023-05-19T01:26:43Z) - Semantic-Preserving Augmentation for Robust Image-Text Retrieval [27.2916415148638]
RVSEは、画像のセマンティック保存強化(SPAugI)とテキスト(SPAugT)という、新しい画像ベースおよびテキストベースの拡張技術からなる。
SPAugIとSPAugTは、その意味情報が保存されるように元のデータを変更するため、特徴抽出器を強制して意味を意識した埋め込みベクトルを生成する。
ベンチマークデータセットを用いた広範囲な実験から、RVSEは画像テキスト検索性能において従来の検索手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-10T03:50:44Z) - Diffusion in the Dark: A Diffusion Model for Low-Light Text Recognition [78.50328335703914]
ディフュージョン・イン・ザ・ダーク (Diffusion in the Dark, DiD) は、テキスト認識のための低照度画像再構成のための拡散モデルである。
実画像上での低照度テキスト認識において,Digital DiDがSOTAの低照度手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-03-07T23:52:51Z) - Re-Imagen: Retrieval-Augmented Text-to-Image Generator [58.60472701831404]
検索用テキスト・ツー・イメージ・ジェネレータ(再画像)
検索用テキスト・ツー・イメージ・ジェネレータ(再画像)
論文 参考訳(メタデータ) (2022-09-29T00:57:28Z) - Enhancing Low-Light Images in Real World via Cross-Image Disentanglement [58.754943762945864]
そこで本研究では,現実の汚職とミスアライメントされたトレーニング画像からなる,新しい低照度画像強調データセットを提案する。
本モデルでは,新たに提案したデータセットと,他の一般的な低照度データセットの両方に対して,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-01-10T03:12:52Z) - Burst Denoising of Dark Images [19.85860245798819]
超暗い生画像からクリーンでカラフルなRGB画像を得るためのディープラーニングフレームワークを提案する。
我々のフレームワークのバックボーンは、プログレッシブな方法で高品質な出力を生成する新しい粗いネットワークアーキテクチャである。
実験により,提案手法は最先端の手法よりも知覚的により満足な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2020-03-17T17:17:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。