Path Development Network with Finite-dimensional Lie Group
Representation
- URL: http://arxiv.org/abs/2204.00740v1
- Date: Sat, 2 Apr 2022 02:01:00 GMT
- Title: Path Development Network with Finite-dimensional Lie Group
Representation
- Authors: Hang Lou, Siran Li, Hao Ni
- Abstract summary: We propose a novel, trainable path development layer, which exploits representations of sequential data with the help of finite-dimensional matrix Lie groups.
Numerical experiments demonstrate that the path development consistently and significantly outperforms, in terms of accuracy and dimensionality, signature features on several empirical datasets.
- Score: 1.6114012813668934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The path signature, a mathematically principled and universal feature of
sequential data, leads to a performance boost of deep learning-based models in
various sequential data tasks as a complimentary feature. However, it suffers
from the curse of dimensionality when the path dimension is high. To tackle
this problem, we propose a novel, trainable path development layer, which
exploits representations of sequential data with the help of finite-dimensional
matrix Lie groups. We also design the backpropagation algorithm of the
development layer via an optimisation method on manifolds known as
trivialisation. Numerical experiments demonstrate that the path development
consistently and significantly outperforms, in terms of accuracy and
dimensionality, signature features on several empirical datasets. Moreover,
stacking the LSTM with the development layer with a suitable matrix Lie group
is empirically proven to alleviate the gradient issues of LSTMs and the
resulting hybrid model achieves the state-of-the-art performance.
Related papers
- Deep Learning as Ricci Flow [38.27936710747996]
Deep neural networks (DNNs) are powerful tools for approximating the distribution of complex data.
We show that the transformations performed by DNNs during classification tasks have parallels to those expected under Hamilton's Ricci flow.
Our findings motivate the use of tools from differential and discrete geometry to the problem of explainability in deep learning.
arXiv Detail & Related papers (2024-04-22T15:12:47Z) - Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
We present a framework for training generative models for density estimation.
We use the score-based diffusion model to generate labeled data.
Once the labeled data are generated, we can train a simple fully connected neural network to learn the generative model in the supervised manner.
arXiv Detail & Related papers (2023-10-22T23:56:19Z) - A Deep Dive into the Connections Between the Renormalization Group and
Deep Learning in the Ising Model [0.0]
Renormalization group (RG) is an essential technique in statistical physics and quantum field theory.
We develop extensive renormalization techniques for the 1D and 2D Ising model to provide a baseline for comparison.
For the 2D Ising model, we successfully generated Ising model samples using the Wolff algorithm, and performed the group flow using a quasi-deterministic method.
arXiv Detail & Related papers (2023-08-21T22:50:54Z) - DRGCN: Dynamic Evolving Initial Residual for Deep Graph Convolutional
Networks [19.483662490506646]
We propose a novel model called Dynamic evolving initial Residual Graph Convolutional Network (DRGCN)
Our experimental results show that our model effectively relieves the problem of over-smoothing in deep GCNs.
Our model reaches new SOTA results on the large-scale ogbn-arxiv dataset of Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-02-10T06:57:12Z) - Deep Manifold Learning with Graph Mining [80.84145791017968]
We propose a novel graph deep model with a non-gradient decision layer for graph mining.
The proposed model has achieved state-of-the-art performance compared to the current models.
arXiv Detail & Related papers (2022-07-18T04:34:08Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
Semi-supervised learning (SSL) over graph-structured data emerges in many network science applications.
To efficiently manage learning over graphs, variants of graph neural networks (GNNs) have been developed recently.
Despite their success in practice, most of existing methods are unable to handle graphs with uncertain nodal attributes.
Challenges also arise due to distributional uncertainties associated with data acquired by noisy measurements.
A distributionally robust learning framework is developed, where the objective is to train models that exhibit quantifiable robustness against perturbations.
arXiv Detail & Related papers (2021-10-20T14:23:54Z) - Data-Driven Reduced-Order Modeling of Spatiotemporal Chaos with Neural
Ordinary Differential Equations [0.0]
We present a data-driven reduced order modeling method that capitalizes on the chaotic dynamics of partial differential equations.
We find that dimension reduction improves performance relative to predictions in the ambient space.
With the low-dimensional model, we find excellent short- and long-time statistical recreation of the true dynamics for widely spaced data.
arXiv Detail & Related papers (2021-08-31T20:00:33Z) - Manifold Topology Divergence: a Framework for Comparing Data Manifolds [109.0784952256104]
We develop a framework for comparing data manifold, aimed at the evaluation of deep generative models.
Based on the Cross-Barcode, we introduce the Manifold Topology Divergence score (MTop-Divergence)
We demonstrate that the MTop-Divergence accurately detects various degrees of mode-dropping, intra-mode collapse, mode invention, and image disturbance.
arXiv Detail & Related papers (2021-06-08T00:30:43Z) - E(n) Equivariant Graph Neural Networks [86.75170631724548]
This paper introduces a new model to learn graph neural networks equivariant to rotations, translations, reflections and permutations called E(n)-Equivariant Graph Neural Networks (EGNNs)
In contrast with existing methods, our work does not require computationally expensive higher-order representations in intermediate layers while it still achieves competitive or better performance.
arXiv Detail & Related papers (2021-02-19T10:25:33Z) - Mix Dimension in Poincar\'{e} Geometry for 3D Skeleton-based Action
Recognition [57.98278794950759]
Graph Convolutional Networks (GCNs) have already demonstrated their powerful ability to model the irregular data.
We present a novel spatial-temporal GCN architecture which is defined via the Poincar'e geometry.
We evaluate our method on two current largest scale 3D datasets.
arXiv Detail & Related papers (2020-07-30T18:23:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.