AutoProtoNet: Interpretability for Prototypical Networks
- URL: http://arxiv.org/abs/2204.00929v1
- Date: Sat, 2 Apr 2022 19:42:03 GMT
- Title: AutoProtoNet: Interpretability for Prototypical Networks
- Authors: Pedro Sandoval-Segura and Wallace Lawson
- Abstract summary: We introduce AutoProtoNet, which builds interpretability into Prototypical Networks.
We demonstrate how points in this embedding space can be visualized and used to understand class representations.
We also devise a prototype refinement method, which allows a human to debug inadequate classification parameters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In meta-learning approaches, it is difficult for a practitioner to make sense
of what kind of representations the model employs. Without this ability, it can
be difficult to both understand what the model knows as well as to make
meaningful corrections. To address these challenges, we introduce AutoProtoNet,
which builds interpretability into Prototypical Networks by training an
embedding space suitable for reconstructing inputs, while remaining convenient
for few-shot learning. We demonstrate how points in this embedding space can be
visualized and used to understand class representations. We also devise a
prototype refinement method, which allows a human to debug inadequate
classification parameters. We use this debugging technique on a custom
classification task and find that it leads to accuracy improvements on a
validation set consisting of in-the-wild images. We advocate for
interpretability in meta-learning approaches and show that there are
interactive ways for a human to enhance meta-learning algorithms.
Related papers
- Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach [87.8330887605381]
We show how to adapt a pre-trained Vision Transformer to downstream recognition tasks with only a few learnable parameters.
We synthesize a task-specific query with a learnable and lightweight module, which is independent of the pre-trained model.
Our method achieves state-of-the-art performance under memory constraints, showcasing its applicability in real-world situations.
arXiv Detail & Related papers (2024-07-09T15:45:04Z) - Context-Aware Meta-Learning [52.09326317432577]
We propose a meta-learning algorithm that emulates Large Language Models by learning new visual concepts during inference without fine-tuning.
Our approach exceeds or matches the state-of-the-art algorithm, P>M>F, on 8 out of 11 meta-learning benchmarks.
arXiv Detail & Related papers (2023-10-17T03:35:27Z) - Consistent Explanations by Contrastive Learning [15.80891456718324]
Post-hoc evaluation techniques, such as Grad-CAM, enable humans to inspect the spatial regions responsible for a particular network decision.
We introduce a novel training method to train the model to produce more consistent explanations.
We show that our method, Contrastive Grad-CAM Consistency (CGC), results in Grad-CAM interpretation heatmaps that are consistent with human annotations.
arXiv Detail & Related papers (2021-10-01T16:49:16Z) - A Representation Learning Perspective on the Importance of
Train-Validation Splitting in Meta-Learning [14.720411598827365]
splitting data from each task into train and validation sets during meta-training.
We argue that the train-validation split encourages the learned representation to be low-rank without compromising on expressivity.
Since sample efficiency benefits from low-rankness, the splitting strategy will require very few samples to solve unseen test tasks.
arXiv Detail & Related papers (2021-06-29T17:59:33Z) - How Fine-Tuning Allows for Effective Meta-Learning [50.17896588738377]
We present a theoretical framework for analyzing representations derived from a MAML-like algorithm.
We provide risk bounds on the best predictor found by fine-tuning via gradient descent, demonstrating that the algorithm can provably leverage the shared structure.
This separation result underscores the benefit of fine-tuning-based methods, such as MAML, over methods with "frozen representation" objectives in few-shot learning.
arXiv Detail & Related papers (2021-05-05T17:56:00Z) - Model-Agnostic Explanations using Minimal Forcing Subsets [11.420687735660097]
We propose a new model-agnostic algorithm to identify a minimal set of training samples that are indispensable for a given model's decision.
Our algorithm identifies such a set of "indispensable" samples iteratively by solving a constrained optimization problem.
Results show that our algorithm is an effective and easy-to-comprehend tool that helps to better understand local model behavior.
arXiv Detail & Related papers (2020-11-01T22:45:16Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - Complementing Representation Deficiency in Few-shot Image
Classification: A Meta-Learning Approach [27.350615059290348]
We propose a meta-learning approach with complemented representations network (MCRNet) for few-shot image classification.
In particular, we embed a latent space, where latent codes are reconstructed with extra representation information to complement the representation deficiency.
Our end-to-end framework achieves the state-of-the-art performance in image classification on three standard few-shot learning datasets.
arXiv Detail & Related papers (2020-07-21T13:25:54Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
We propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions.
We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation.
arXiv Detail & Related papers (2020-07-14T22:04:17Z) - Semi-supervised Learning with a Teacher-student Network for Generalized
Attribute Prediction [7.462336024223667]
This paper presents a study on semi-supervised learning to solve the visual attribute prediction problem.
Our method achieves competitive performance on various benchmarks for fashion attribute prediction.
arXiv Detail & Related papers (2020-07-14T02:06:24Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
We introduce a learning algorithm which directly optimize model's ability to learn text representations for effective learning of downstream tasks.
We show that there is an intrinsic connection between multi-task pre-training and model-agnostic meta-learning with a sequence of meta-train steps.
arXiv Detail & Related papers (2020-04-12T09:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.