論文の概要: A Dynamic Meta-Learning Model for Time-Sensitive Cold-Start
Recommendations
- arxiv url: http://arxiv.org/abs/2204.00970v1
- Date: Sun, 3 Apr 2022 02:04:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-05 17:03:48.620597
- Title: A Dynamic Meta-Learning Model for Time-Sensitive Cold-Start
Recommendations
- Title(参考訳): 時間知覚型コールドスタート勧告のための動的メタラーニングモデル
- Authors: Krishna Prasad Neupane, Ervine Zheng, Yu Kong, Qi Yu
- Abstract要約: 本稿では,過去にインタラクションがあったが,最近は比較的非アクティブなユーザに焦点を当てた,新しい動的レコメンデーションモデルを提案する。
近年のインタラクションが不足しているため、これらのユーザの現在の好みを正確に把握することは困難である。
- 参考スコア(独自算出の注目度): 24.815498451832347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel dynamic recommendation model that focuses on users who
have interactions in the past but turn relatively inactive recently. Making
effective recommendations to these time-sensitive cold-start users is critical
to maintain the user base of a recommender system. Due to the sparse recent
interactions, it is challenging to capture these users' current preferences
precisely. Solely relying on their historical interactions may also lead to
outdated recommendations misaligned with their recent interests. The proposed
model leverages historical and current user-item interactions and dynamically
factorizes a user's (latent) preference into time-specific and time-evolving
representations that jointly affect user behaviors. These latent factors
further interact with an optimized item embedding to achieve accurate and
timely recommendations. Experiments over real-world data help demonstrate the
effectiveness of the proposed time-sensitive cold-start recommendation model.
- Abstract(参考訳): 本稿では,最近比較的非アクティブなインタラクションを持つユーザに注目した,新しい動的レコメンデーションモデルを提案する。
これらの時間に敏感なコールドスタートユーザに対して効果的なレコメンデーションを行うことは、レコメンデーションシステムのユーザベースを維持する上で重要である。
近年のインタラクションが乏しいため,ユーザの現在の好みを正確に把握することは困難である。
歴史的相互作用を頼りにすれば、最近の関心に合わない時代遅れのレコメンデーションにつながるかもしれない。
提案モデルでは,過去のユーザとイテムのインタラクションを活用し,ユーザの嗜好を動的に分解し,ユーザの行動に影響を及ぼす時間固有表現と時間進化表現に分解する。
これらの潜在要因は、正確かつタイムリーなレコメンデーションを達成するために、最適化されたアイテム埋め込みとさらに相互作用する。
実世界のデータに対する実験は、提案された時間に敏感なコールドスタートレコメンデーションモデルの有効性を示すのに役立つ。
関連論文リスト
- Look into the Future: Deep Contextualized Sequential Recommendation [28.726897673576865]
我々は、Look into the Future(LIFT)と呼ばれる、シーケンシャルなレコメンデーションの新しいフレームワークを提案する。
LIFTはシーケンシャルなレコメンデーションのコンテキストを構築し、活用する。
本実験では,クリックスルー率予測および評価予測タスクにおいて,LIFTは大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2024-05-23T09:34:28Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
逐次リコメンデータモデルは、プラットフォーム上での氏のインタラクション履歴に基づいて、ユーザが次に対話する可能性のあるアイテムを予測することを学習する。
しかし、ほとんどのシーケンシャルなレコメンデータは、ユーザの意図に対する高いレベルの理解を欠いている。
したがって、インテントモデリングはユーザー理解と長期ユーザーエクスペリエンスの最適化に不可欠である。
論文 参考訳(メタデータ) (2022-11-17T19:00:24Z) - Multi-Behavior Sequential Recommendation with Temporal Graph Transformer [66.10169268762014]
マルチビヘイビア・インタラクティブなパターンを意識した動的ユーザ・イテム関係学習に取り組む。
本稿では,動的短期および長期のユーザ・イテム対話パターンを共同でキャプチャする,TGT(Temporal Graph Transformer)レコメンデーションフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-06T15:42:54Z) - Modeling Dynamic User Preference via Dictionary Learning for Sequential
Recommendation [133.8758914874593]
ユーザの好みのダイナミックさを捉えることは、ユーザの将来の行動を予測する上で非常に重要です。
浅いものも深いものも含む、既存のレコメンデーションアルゴリズムの多くは、このようなダイナミクスを独立してモデル化することが多い。
本稿では、ユーザのシーケンシャルな振る舞いを、ユーザ好みの潜伏した空間に埋め込むことの問題について考察する。
論文 参考訳(メタデータ) (2022-04-02T03:23:46Z) - Sparsity Regularization For Cold-Start Recommendation [7.848143873095096]
ユーザ人口統計とユーザ嗜好を組み合わせることで,ユーザベクタのための新しい表現を導入する。
我々は,スパースユーザ・購入行動を利用したコールド・スタート・レコメンデーションのための新しいスパース・逆モデルSRLGANを開発した。
SRLGANを2つの一般的なデータセットで評価し、最先端の結果を示す。
論文 参考訳(メタデータ) (2022-01-26T02:28:08Z) - TEA: A Sequential Recommendation Framework via Temporally Evolving
Aggregations [12.626079984394766]
動的ユーザ・イテム不均質グラフに基づく新しいシーケンシャル・レコメンデーション・フレームワークを提案する。
条件付き乱数場を利用して不均一なグラフとユーザ動作を集約し,確率推定を行う。
提案したフレームワークのスケーラブルで柔軟な実装を提供しています。
論文 参考訳(メタデータ) (2021-11-14T15:54:23Z) - Learning to Learn a Cold-start Sequential Recommender [70.5692886883067]
コールドスタート勧告は、現代のオンラインアプリケーションにおいて緊急の問題である。
メタ学習に基づくコールドスタートシーケンシャルレコメンデーションフレームワークMetaCSRを提案する。
MetaCSRは、通常のユーザの行動から共通のパターンを学ぶ能力を持っている。
論文 参考訳(メタデータ) (2021-10-18T08:11:24Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
シーケンシャルレコメンデーションのための動的表現学習モデル(DRL-SRe)を考案する。
両面から動的に特徴付けるためのユーザ・イテム相互作用をモデル化するため,提案モデルでは,時間スライス毎にグローバルなユーザ・イテム相互作用グラフを構築した。
モデルが微粒な時間情報を捕捉することを可能にするため,連続時間スライス上での補助的時間予測タスクを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:44:27Z) - Learning Heterogeneous Temporal Patterns of User Preference for Timely
Recommendation [15.930016839929047]
我々はTimelyRecと呼ばれるタイムリーなレコメンデーションのための新しいレコメンデーションシステムを提案する。
TimelyRecでは、2つのエンコーダのカスケードが、各エンコーダに対して提案されたアテンションモジュールを使用して、ユーザの好みの時間パターンをキャプチャする。
実世界のデータセットにおける項目推薦シナリオと項目決定推薦シナリオの実験により,timelyrecの優位性が示された。
論文 参考訳(メタデータ) (2021-04-29T08:37:30Z) - Dynamic Graph Collaborative Filtering [64.87765663208927]
動的レコメンデーションは,逐次データに基づくリアルタイム予測を提供するレコメンデータシステムにとって不可欠である。
本稿では、動的グラフを利用して協調関係とシーケンシャル関係をキャプチャする新しいフレームワーク、Dynamic Graph Collaborative Filtering (DGCF)を提案する。
提案手法は, 動的協調情報の統合の有効性を示すため, 動作繰り返しの少ないデータセットでは高い性能を実現する。
論文 参考訳(メタデータ) (2021-01-08T04:16:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。