論文の概要: Bi-directional Loop Closure for Visual SLAM
- arxiv url: http://arxiv.org/abs/2204.01524v1
- Date: Fri, 1 Apr 2022 14:06:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-08 07:02:00.066436
- Title: Bi-directional Loop Closure for Visual SLAM
- Title(参考訳): 視覚スラム用双方向ループクロージャ
- Authors: Ihtisham Ali, Sari Peltonen, Atanas Gotchev
- Abstract要約: 本稿では,双方向ループ閉鎖に対するアプローチを提案する。
これにより、反対方向に移動しても、ロケーションに再ローカライズすることが可能になります。
本稿では,大規模データセットからトレーニングデータを選択する手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A key functional block of visual navigation system for intelligent autonomous
vehicles is Loop Closure detection and subsequent relocalisation.
State-of-the-Art methods still approach the problem as uni-directional along
the direction of the previous motion. As a result, most of the methods fail in
the absence of a significantly similar overlap of perspectives. In this study,
we propose an approach for bi-directional loop closure. This will, for the
first time, provide us with the capability to relocalize to a location even
when traveling in the opposite direction, thus significantly reducing long-term
odometry drift in the absence of a direct loop. We present a technique to
select training data from large datasets in order to make them usable for the
bi-directional problem. The data is used to train and validate two different
CNN architectures for loop closure detection and subsequent regression of 6-DOF
camera pose between the views in an end-to-end manner. The outcome packs a
considerable impact and aids significantly to real-world scenarios that do not
offer direct loop closure opportunities. We provide a rigorous empirical
comparison against other established approaches and evaluate our method on both
outdoor and indoor data from the FinnForest dataset and PennCOSYVIO dataset.
- Abstract(参考訳): インテリジェントな自動運転車のための視覚ナビゲーションシステムの重要な機能ブロックはループクロージャ検出とその後の再ローカライズである。
State-of-the-Artメソッドは、以前の動きの方向に沿って一方向として問題にアプローチする。
その結果、ほとんどの手法は、視点の非常に類似した重複がないために失敗する。
本研究では,双方向ループ閉鎖に対するアプローチを提案する。
これにより、初めて、反対方向に移動しても位置への再ローカライズが可能になるため、直接ループがない場合の長期的なオドメトリドリフトを著しく削減できます。
本稿では,大規模データセットからトレーニングデータを選択する手法を提案する。
このデータは、ループクロージャ検出のための2つの異なるCNNアーキテクチャのトレーニングと検証に使用され、その後、ビュー間の6-DOFカメラのポーズをエンドツーエンドで再現する。
結果はかなりの影響を伴い、直接ループ閉鎖の機会を提供しない現実世界のシナリオに大きく貢献する。
また,finnforestデータセットとpenpencosyvioデータセットの屋外データと屋内データの両方に対して,厳密な経験的比較を行い,その方法を評価した。
関連論文リスト
- Inferring Neural Signed Distance Functions by Overfitting on Single Noisy Point Clouds through Finetuning Data-Driven based Priors [53.6277160912059]
本稿では,データ駆動型およびオーバーフィット型手法のプロースを推進し,より一般化し,高速な推論を行い,より高精度なニューラルネットワークSDFを学習する手法を提案する。
そこで本研究では,距離管理やクリーンポイントクラウド,あるいは点正規化を伴わずに,データ駆動型プリエントを微調整できる新しい統計的推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-25T16:48:44Z) - Comparing Optical Flow and Deep Learning to Enable Computationally Efficient Traffic Event Detection with Space-Filling Curves [0.6322312717516407]
我々は,OF(Optical Flow)とDL(Deep Learning)を比較し,前方の車載カメラからの映像データに対して,空間充填曲線による計算効率の高いイベント検出を行う。
以上の結果から,OFアプローチは特異性に優れ,偽陽性を低減し,DLアプローチは優れた感度を示した。
論文 参考訳(メタデータ) (2024-07-15T13:44:52Z) - Cross-Camera Trajectories Help Person Retrieval in a Camera Network [124.65912458467643]
既存の手法では、純粋な視覚的マッチングや時間的制約を考慮することが多いが、カメラネットワークの空間情報は無視する。
本稿では,時間的情報と空間的情報を統合したクロスカメラ生成に基づく歩行者検索フレームワークを提案する。
本手法の有効性を検証するため,最初のカメラ横断歩行者軌跡データセットを構築した。
論文 参考訳(メタデータ) (2022-04-27T13:10:48Z) - A Two-Block RNN-based Trajectory Prediction from Incomplete Trajectory [14.725386295605666]
本稿では,ベイズフィルタフレームワークの推論ステップを近似した2ブロックRNNモデルを提案する。
提案手法は,3つのベースライン計算法と比較して予測精度を向上することを示す。
また,提案手法は誤り検出がない場合の基準値よりも予測精度がよいことを示す。
論文 参考訳(メタデータ) (2022-03-14T13:39:44Z) - 6D Rotation Representation For Unconstrained Head Pose Estimation [2.1485350418225244]
本研究は, 基底真理データに対する回転行列形式を導入して, あいまいな回転ラベルの問題に対処する。
このようにして、提案手法は、ポーズ予測を狭角に制限する従来のアプローチとは正反対に、全回転の外観を学習することができる。
AFLW2000およびBIWIデータセットを用いた実験により,提案手法が他の最先端手法よりも最大20%高い性能を示した。
論文 参考訳(メタデータ) (2022-02-25T08:41:13Z) - Light Field Saliency Detection with Dual Local Graph Learning
andReciprocative Guidance [148.9832328803202]
我々は、グラフネットワークを介して焦点スタック内のインフォメーション融合をモデル化する。
我々は、全焦点パタンを用いて焦点スタック融合過程をガイドする新しいデュアルグラフモデルを構築した。
論文 参考訳(メタデータ) (2021-10-02T00:54:39Z) - LCDNet: Deep Loop Closure Detection for LiDAR SLAM based on Unbalanced
Optimal Transport [8.21384946488751]
LiDAR ポイント クラウドのループ クロージャを効果的に検出する新しい LCDNet を紹介します。
LCDNetは、共有エンコーダ、グローバルディスクリプタを抽出する場所認識ヘッド、および2つの点雲間の変換を推定する相対ポーズヘッドで構成されています。
私たちのアプローチは、逆ループを扱う場合でも、最先端の技術を大きなマージンで上回る。
論文 参考訳(メタデータ) (2021-03-08T20:19:37Z) - Diverse Knowledge Distillation for End-to-End Person Search [81.4926655119318]
人物検索は、画像ギャラリーから特定の人物をローカライズし識別することを目的としている。
最近の手法は2つのグループ、すなわち2段階とエンドツーエンドのアプローチに分類できる。
ボトルネックを解消するために、多様な知識蒸留を備えたシンプルで強力なエンドツーエンドネットワークを提案します。
論文 参考訳(メタデータ) (2020-12-21T09:04:27Z) - STINet: Spatio-Temporal-Interactive Network for Pedestrian Detection and
Trajectory Prediction [24.855059537779294]
本稿では、新しいエンドツーエンド2段階ネットワーク:spatio--Interactive Network(STINet)を提案する。
歩行者の3次元形状に加えて,歩行者ごとの時間情報をモデル化する。
提案手法は,1段目における現在位置と過去の位置の両方を予測し,各歩行者をフレーム間でリンクできるようにする。
論文 参考訳(メタデータ) (2020-05-08T18:43:01Z) - Detection in Crowded Scenes: One Proposal, Multiple Predictions [79.28850977968833]
混み合ったシーンにおける高過度なインスタンスを検出することを目的とした,提案手法によるオブジェクト検出手法を提案する。
このアプローチの鍵は、各提案が以前の提案ベースのフレームワークの1つではなく、関連したインスタンスのセットを予測できるようにすることです。
我々の検出器は、CrowdHumanデータセットの挑戦に対して4.9%のAPゲインを得ることができ、CityPersonsデータセットでは1.0%$textMR-2$の改善がある。
論文 参考訳(メタデータ) (2020-03-20T09:48:53Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
本稿では,マルチオブジェクトトラッキング(MOT)問題のトラッキング・バイ・検出パラダイムに見られるデータアソシエーションフェーズに対する制約プログラミング(CP)アプローチを提案する。
提案手法は車両追跡データを用いてテストし,UA-DETRACベンチマークの上位手法よりも優れた結果を得た。
論文 参考訳(メタデータ) (2020-03-10T00:04:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。