論文の概要: RobustSense: Defending Adversarial Attack for Secure Device-Free Human
Activity Recognition
- arxiv url: http://arxiv.org/abs/2204.01560v1
- Date: Mon, 4 Apr 2022 15:06:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-05 16:27:09.808589
- Title: RobustSense: Defending Adversarial Attack for Secure Device-Free Human
Activity Recognition
- Title(参考訳): RobustSense: セキュアデバイスフリーなヒューマンアクティビティ認識のための敵攻撃を防御する
- Authors: Jianfei Yang, Han Zou, Lihua Xie
- Abstract要約: 我々は、共通の敵攻撃を防御する新しい学習フレームワーク、RobustSenseを提案する。
本手法は,無線による人間行動認識と人物識別システムに有効である。
- 参考スコア(独自算出の注目度): 37.387265457439476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have empowered accurate device-free human activity
recognition, which has wide applications. Deep models can extract robust
features from various sensors and generalize well even in challenging
situations such as data-insufficient cases. However, these systems could be
vulnerable to input perturbations, i.e. adversarial attacks. We empirically
demonstrate that both black-box Gaussian attacks and modern adversarial
white-box attacks can render their accuracies to plummet. In this paper, we
firstly point out that such phenomenon can bring severe safety hazards to
device-free sensing systems, and then propose a novel learning framework,
RobustSense, to defend common attacks. RobustSense aims to achieve consistent
predictions regardless of whether there exists an attack on its input or not,
alleviating the negative effect of distribution perturbation caused by
adversarial attacks. Extensive experiments demonstrate that our proposed method
can significantly enhance the model robustness of existing deep models,
overcoming possible attacks. The results validate that our method works well on
wireless human activity recognition and person identification systems. To the
best of our knowledge, this is the first work to investigate adversarial
attacks and further develop a novel defense framework for wireless human
activity recognition in mobile computing research.
- Abstract(参考訳): ディープニューラルネットワークは、デバイスフリーな人間のアクティビティ認識の精度を高める。
ディープモデルは様々なセンサーから堅牢な特徴を抽出し、データ不足のような困難な状況でもうまく一般化することができる。
しかし、これらのシステムは入力の摂動、すなわち敵攻撃に弱い可能性がある。
我々は,ブラックボックスガウシアン攻撃と現代の敵対的ホワイトボックス攻撃の両方が,彼らの不正確さを損なう可能性があることを実証的に示す。
本稿では,この現象がデバイスレスセンシングシステムに深刻な危険をもたらすことを最初に指摘し,その上で,共通攻撃を防御する新たな学習フレームワークであるRobustSenseを提案する。
robustsenseは、入力に対する攻撃が存在するかどうかに関わらず、一貫した予測を達成し、敵の攻撃による分散摂動の悪影響を緩和することを目指している。
大規模な実験により,提案手法は既存の深層モデルのモデルロバスト性を著しく向上し,攻撃を克服できることを示した。
提案手法は,無線アクティビティ認識と人物識別システムにおいて有効であることを確認した。
我々の知る限り、これは敵の攻撃を調査し、モバイルコンピューティング研究における無線ヒューマンアクティビティ認識のための新しい防御フレームワークをさらに発展させる最初の試みである。
関連論文リスト
- Principles of Designing Robust Remote Face Anti-Spoofing Systems [60.05766968805833]
本稿では,デジタル攻撃に対する最先端の対面防止手法の脆弱性に光を当てる。
反偽造システムに遭遇する一般的な脅威を包括的に分類する。
論文 参考訳(メタデータ) (2024-06-06T02:05:35Z) - Humanizing Machine-Generated Content: Evading AI-Text Detection through Adversarial Attack [24.954755569786396]
そこで本研究では,機械生成コンテンツの小さな摂動を回避して検出を回避すべく,より広いレベルの敵攻撃のためのフレームワークを提案する。
我々は、ホワイトボックスとブラックボックスの2つの攻撃設定を検討し、現在の検出モデルのロバスト性を高める可能性を評価するために、動的シナリオにおける逆学習を採用する。
実験の結果、現在の検出モデルは10秒で妥協でき、機械が生成したテキストを人間の書き起こしコンテンツとして誤分類する結果となった。
論文 参考訳(メタデータ) (2024-04-02T12:49:22Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
我々の研究では、最大5つの攻撃アルゴリズムを3つのデータセットにわたって探索する。
対人摂動における人間の識別可能な特徴を同定する。
画素レベルのアノテーションを用いて、そのような特徴を抽出し、ターゲットモデルに妥協する能力を実証する。
論文 参考訳(メタデータ) (2023-09-28T22:31:29Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - Certifiers Make Neural Networks Vulnerable to Availability Attacks [70.69104148250614]
私たちは初めて、逆転戦略が敵によって意図的に引き起こされる可能性があることを示します。
いくつかの入力や摂動のために自然に発生する障害に加えて、敵は故意にフォールバックを誘発するために訓練時間攻撃を使用することができる。
我々は2つの新しいアベイラビリティーアタックを設計し、これらの脅威の実用的妥当性を示す。
論文 参考訳(メタデータ) (2021-08-25T15:49:10Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - An Empirical Review of Adversarial Defenses [0.913755431537592]
このようなシステムの基礎を形成するディープニューラルネットワークは、敵対攻撃と呼ばれる特定のタイプの攻撃に非常に影響を受けやすい。
ハッカーは、最小限の計算でも、敵対的な例(他のクラスに属するイメージやデータポイント)を生成し、そのようなアルゴリズムの基礎を崩壊させることができます。
本稿では,DropoutとDenoising Autoencodersの2つの効果的な手法を示し,そのような攻撃がモデルを騙すのを防ぐことに成功したことを示す。
論文 参考訳(メタデータ) (2020-12-10T09:34:41Z) - Detection Defense Against Adversarial Attacks with Saliency Map [7.736844355705379]
ニューラルネットワークは、人間の視覚にほとんど受容できない敵の例に弱いことがよく確認されている。
既存の防衛は、敵の攻撃に対するモデルの堅牢性を強化する傾向にある。
本稿では,新たな雑音と組み合わせた新しい手法を提案し,不整合戦略を用いて敵のサンプルを検出する。
論文 参考訳(メタデータ) (2020-09-06T13:57:17Z) - Adversarial Deep Ensemble: Evasion Attacks and Defenses for Malware
Detection [8.551227913472632]
悪意のある機能を損なうことなく、マルウェアの例を妨害する新たな攻撃手法を提案する。
このことは、ディープニューラルネットワークのアンサンブルを強化するために、敵のトレーニングの新たなインスタンス化につながる。
2つの実用的なデータセットに対する26の異なる攻撃に対して,Androidマルウェア検出器を用いた防御評価を行った。
論文 参考訳(メタデータ) (2020-06-30T05:56:33Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。