Tomography of Ultra-relativistic Nuclei with Polarized Photon-gluon
Collisions
- URL: http://arxiv.org/abs/2204.01625v1
- Date: Mon, 4 Apr 2022 16:14:20 GMT
- Title: Tomography of Ultra-relativistic Nuclei with Polarized Photon-gluon
Collisions
- Authors: STAR Collaboration: M. S. Abdallah, B. E. Aboona, J. Adam, L.
Adamczyk, J. R. Adams, J. K. Adkins, G. Agakishiev, I. Aggarwal, M. M.
Aggarwal, Z. Ahammed, A. Aitbaev, I. Alekseev, D. M. Anderson, A. Aparin, E.
C. Aschenauer, M. U. Ashraf, F. G. Atetalla, G. S. Averichev, V. Bairathi, W.
Baker, J. G. Ball Cap, K. Barish, A. Behera, R. Bellwied, P. Bhagat, A.
Bhasin, J. Bielcik, J. Bielcikova, I. G. Bordyuzhin, J. D. Brandenburg, A. V.
Brandin, X. Z. Cai, H. Caines, M. Calder\'on de la Barca S\'anchez, D. Cebra,
I. Chakaberia, P. Chaloupka, B. K. Chan, F-H. Chang, Z. Chang, A. Chatterjee,
S. Chattopadhyay, D. Chen, J. Chen, J. H. Chen, X. Chen, Z. Chen, J. Cheng,
S. Choudhury, W. Christie, X. Chu, H. J. Crawford, M. Csan\'ad, M.
Daugherity, T. G. Dedovich, I. M. Deppner, A. A. Derevschikov, A. Dhamija, L.
Di Carlo, L. Didenko, P. Dixit, X. Dong, J. L. Drachenberg, E. Duckworth, J.
C. Dunlop, J. Engelage, G. Eppley, S. Esumi, O. Evdokimov, A. Ewigleben, O.
Eyser, R. Fatemi, F. M. Fawzi, S. Fazio, C. J. Feng, Y. Feng, E. Finch, Y.
Fisyak, A. Francisco, C. Fu, C. A. Gagliardi, T. Galatyuk, F. Geurts, N.
Ghimire, A. Gibson, K. Gopal, X. Gou, D. Grosnick, A. Gupta, W. Guryn, A.
Hamed, Y. Han, S. Harabasz, M. D. Harasty, J. W. Harris, H. Harrison, S. He,
W. He, X. H. He, Y. He, S. Heppelmann, N. Herrmann, E. Hoffman, L. Holub, C.
Hu, Q. Hu, Y. Hu, H. Huang, H. Z. Huang, S. L. Huang, T. Huang, X. Huang, Y.
Huang, T. J. Humanic, D. Isenhower, M. Isshiki, W. W. Jacobs, C. Jena, A.
Jentsch, Y. Ji, J. Jia, K. Jiang, X. Ju, E. G. Judd, S. Kabana, M. L. Kabir,
S. Kagamaster, D. Kalinkin, K. Kang, D. Kapukchyan, K. Kauder, H. W. Ke, D.
Keane, A. Kechechyan, M. Kelsey, D. P. Kiko{\l}a, B. Kimelman, D. Kincses, I.
Kisel, A. Kiselev, S. R. Klein, A. G. Knospe, H. S. Ko, L. Kochenda, A.
Korobitsin, L. K. Kosarzewski, L. Kramarik, P. Kravtsov, L. Kumar, S. Kumar,
R. Kunnawalkam Elayavalli, J. H. Kwasizur, R. Lacey, S. Lan, J. M. Landgraf,
J. Lauret, A. Lebedev, R. Lednicky, J. H. Lee, Y. H. Leung, N. Lewis, C. Li,
C. Li, W. Li, X. Li, Y. Li, Y. Li, X. Liang, Y. Liang, R. Licenik, T. Lin, Y.
Lin, M. A. Lisa, F. Liu, H. Liu, H. Liu, P. Liu, T. Liu, X. Liu, Y. Liu, Z.
Liu, T. Ljubicic, W. J. Llope, R. S. Longacre, E. Loyd, T. Lu, N. S. Lukow,
X. F. Luo, L. Ma, R. Ma, Y. G. Ma, N. Magdy, D. Mallick, S. L. Manukhov, S.
Margetis, C. Markert, H. S. Matis, J. A. Mazer, N. G. Minaev, S.
Mioduszewski, B. Mohanty, M. M. Mondal, I. Mooney, D. A. Morozov, A.
Mukherjee, M. Nagy, J. D. Nam, Md. Nasim, K. Nayak, D. Neff, J. M. Nelson, D.
B. Nemes, M. Nie, G. Nigmatkulov, T. Niida, R. Nishitani, L. V. Nogach, T.
Nonaka, A. S. Nunes, G. Odyniec, A. Ogawa, S. Oh, V. A. Okorokov, K. Okubo,
B. S. Page, R. Pak, J. Pan, A. Pandav, A. K. Pandey, Y. Panebratsev, P.
Parfenov, A. Paul, B. Pawlik, D. Pawlowska, C. Perkins, J. Pluta, B. R.
Pokhrel, J. Porter, M. Posik, V. Prozorova, N. K. Pruthi, M. Przybycien, J.
Putschke, H. Qiu, A. Quintero, C. Racz, S. K. Radhakrishnan, N. Raha, R. L.
Ray, R. Reed, H. G. Ritter, M. Robotkova, J. L. Romero, D. Roy, L. Ruan, A.
K. Sahoo, N. R. Sahoo, H. Sako, S. Salur, E. Samigullin, J. Sandweiss, S.
Sato, W. B. Schmidke, N. Schmitz, B. R. Schweid, F. Seck, J. Seger, R. Seto,
P. Seyboth, N. Shah, E. Shahaliev, P. V. Shanmuganathan, M. Shao, T. Shao, R.
Sharma, A. I. Sheikh, D. Y. Shen, S. S. Shi, Y. Shi, Q. Y. Shou, E. P.
Sichtermann, R. Sikora, J. Singh, S. Singha, P. Sinha, M. J. Skoby, N.
Smirnov, Y. S\"ohngen, W. Solyst, Y. Song, H. M. Spinka, B. Srivastava, T. D.
S. Stanislaus, M. Stefaniak, D. J. Stewart, M. Strikhanov, B. Stringfellow,
A. A. P. Suaide, M. Sumbera, X. M. Sun, X. Sun, Y. Sun, Y. Sun, B. Surrow, D.
N. Svirida, Z. W. Sweger, P. Szymanski, A. H. Tang, Z. Tang, A. Taranenko, T.
Tarnowsky, J. H. Thomas, A. R. Timmins, D. Tlusty, T. Todoroki, M. Tokarev,
C. A. Tomkiel, S. Trentalange, R. E. Tribble, P. Tribedy, S. K. Tripathy, T.
Truhlar, B. A. Trzeciak, O. D. Tsai, Z. Tu, T. Ullrich, D. G. Underwood, I.
Upsal, G. Van Buren, J. Vanek, A. N. Vasiliev, I. Vassiliev, V. Verkest, F.
Videb{\ae}k, S. Vokal, S. A. Voloshin, F. Wang, G. Wang, J. S. Wang, P. Wang,
X. Wang, Y. Wang, Y. Wang, Z. Wang, J. C. Webb, P. C. Weidenkaff, G. D.
Westfall, H. Wieman, S. W. Wissink, R. Witt, J. Wu, J. Wu, Y. Wu, B. Xi, Z.
G. Xiao, G. Xie, W. Xie, H. Xu, N. Xu, Q. H. Xu, Y. Xu, Z. Xu, Z. Xu, G. Yan,
C. Yang, Q. Yang, S. Yang, Y. Yang, Z. Ye, Z. Ye, L. Yi, K. Yip, Y. Yu, H.
Zbroszczyk, W. Zha, C. Zhang, D. Zhang, J. Zhang, S. Zhang, S. Zhang, Y.
Zhang, Y. Zhang, Y. Zhang, Z. J. Zhang, Z. Zhang, Z. Zhang, F. Zhao, J. Zhao,
M. Zhao, C. Zhou, Y. Zhou, X. Zhu, M. Zurek, M. Zyzak
- Abstract summary: A linearly polarized photon can be quantized from the Lorentz-boosted electromagnetic field of a nucleus traveling at ultra-relativistic speed.
In this experiment, the polarization was utilized in diffractive photoproduction to observe a unique spin interference pattern in the angular distribution of $rho0pi+pi-$ decays.
- Score: 3.6336843340576355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A linearly polarized photon can be quantized from the Lorentz-boosted
electromagnetic field of a nucleus traveling at ultra-relativistic speed. When
two relativistic heavy nuclei pass one another at a distance of a few nuclear
radii, the photon from one nucleus may interact through a virtual
quark-antiquark pair with gluons from the other nucleus forming a short-lived
vector meson (e.g. ${\rho^0}$). In this experiment, the polarization was
utilized in diffractive photoproduction to observe a unique spin interference
pattern in the angular distribution of ${\rho^0\rightarrow\pi^+\pi^-}$ decays.
The observed interference is a result of an overlap of two wave functions at a
distance an order of magnitude larger than the ${\rho^0}$ travel distance
within its lifetime. The strong-interaction nuclear radii were extracted from
these diffractive interactions, and found to be $6.53\pm 0.06$ fm ($^{197} {\rm
Au }$) and $7.29\pm 0.08$ fm ($^{238} {\rm U}$), larger than the nuclear charge
radii. The observable is demonstrated to be sensitive to the nuclear geometry
and quantum interference of non-identical particles.
Related papers
- Improved Limits on an Exotic Spin- and Velocity-Dependent Interaction at
the Micrometer Scale with an Ensemble-NV-Diamond Magnetometer [7.684562006253786]
We search for an exotic spin- and velocity-dependent interaction between polarized electron spins and unpolarized nucleons at the micrometer scale.
The result establishes new bounds for the coupling parameter $f_perp$ within the force range from 5 to 400 $rm mu$m.
arXiv Detail & Related papers (2023-08-04T11:21:41Z) - Interference of cavity light by a single atom acting as a double slit [5.951810889409693]
We show that when a single atom tunneling in a double well is coupled to an optical ring cavity, the interference phenomena arise.
Being driven by an external laser in the dispersive regime, the field emitted by the atom into the cavity exhibits an interference pattern.
Our work opens ways to manipulate photons with controllable external states of atoms for quantum information applications.
arXiv Detail & Related papers (2023-06-12T11:36:24Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Correlations between cascaded photons from spatially localized
biexcitons in ZnSe [55.41644538483948]
We demonstrate a radiative cascade from the decay of a biexciton at an impurity-atom complex in aSe quantum well.
Our result establishes impurity atoms inSe as a potential platform for photonic quantum technologies using radiative cascades.
arXiv Detail & Related papers (2022-03-11T23:15:37Z) - Generation of vortex particles via generalized measurements [0.0]
We show that vortex states of different particles, including hadrons, ions, and nuclei, can be generated in a large class of processes.
Thanks to entanglement and to the uncertainty relations, an evolved state of a final particle becomes twisted.
technique can be adapted for ultrarelativistic lepton and hadron beams of linear colliders.
arXiv Detail & Related papers (2022-01-20T04:31:22Z) - Atoms in a spin dependent optical potential: ground state topology and
magnetization [0.0]
We investigate a Bose-Einstein condensate of $F= 1$ $87$Rb atoms in a 2D spin-dependent optical lattice.
The atoms behave as a quantum rotor with angular momentum given by the sum of the atomic rotational motion angular momentum and the hyperfine spin.
arXiv Detail & Related papers (2021-05-26T16:07:08Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.