論文の概要: 3D microstructural generation from 2D images of cement paste using generative adversarial networks
- arxiv url: http://arxiv.org/abs/2204.01645v3
- Date: Mon, 18 Nov 2024 02:56:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:27:41.428399
- Title: 3D microstructural generation from 2D images of cement paste using generative adversarial networks
- Title(参考訳): 再生対向ネットワークを用いたセメントペーストの2次元画像からの3次元微細構造生成
- Authors: Xin Zhao, Lin Wang, Qinfei Li, Heng Chen, Shuangrong Liu, Pengkun Hou, Jiayuan Ye, Yan Pei, Xu Wu, Jianfeng Yuan, Haozhong Gao, Bo Yang,
- Abstract要約: 本稿では, 単一の2次元(2次元)画像から3次元構造を生成可能な, 逆ネットワークに基づく生成手法を提案する。
本手法では,2次元断面画像から微細構造情報を学習することにより,3次元画像を合成するフレームワークを設計する。
視覚観察により、生成した3D画像は、同様の細孔分布や粒子形態を含む2D画像と類似した微細構造を示すことが確認された。
- 参考スコア(独自算出の注目度): 13.746290854403874
- License:
- Abstract: Establishing a realistic three-dimensional (3D) microstructure is a crucial step for studying microstructure development of hardened cement pastes. However, acquiring 3D microstructural images for cement often involves high costs and quality compromises. This paper proposes a generative adversarial networks-based method for generating 3D microstructures from a single two-dimensional (2D) image, capable of producing high-quality and realistic 3D images at low cost. In the method, a framework (CEM3DMG) is designed to synthesize 3D images by learning microstructural information from a 2D cross-sectional image. Experimental results show that CEM3DMG can generate realistic 3D images of large size. Visual observation confirms that the generated 3D images exhibit similar microstructural features to the 2D images, including similar pore distribution and particle morphology. Furthermore, quantitative analysis reveals that reconstructed 3D microstructures closely match the real 2D microstructure in terms of gray level histogram, phase proportions, and pore size distribution. The source code for CEM3DMG is available in the GitHub repository at: https://github.com/NBICLAB/CEM3DMG.
- Abstract(参考訳): 現実的な3次元(3次元)微細構造の構築は, セメントペーストの微細構造発達を研究するための重要なステップである。
しかし、セメント用3次元微細構造画像の取得には、高コストと品質の妥協が伴うことが多い。
本稿では,高品質でリアルな3D画像を低コストで作成可能な,単一の2次元(2次元)画像から3次元構造を生成する生成逆ネットワークに基づく手法を提案する。
フレームワーク(CEM3DMG)は、2次元断面画像から微細構造情報を学習することにより3次元画像を合成するように設計されている。
実験結果から,CEM3DMGは大規模でリアルな3D画像を生成することができることがわかった。
視覚観察により、生成した3D画像は、同様の細孔分布や粒子形態を含む2D画像と類似した微細構造を示すことが確認された。
さらに, 3次元組織を再構成した構造は, 灰色レベルのヒストグラム, 位相比, 細孔径分布で, 実際の2次元構造と密に一致していることが明らかとなった。
CEM3DMGのソースコードはGitHubリポジトリ(https://github.com/NBICLAB/CEM3DMG)で公開されている。
関連論文リスト
- LAM3D: Large Image-Point-Cloud Alignment Model for 3D Reconstruction from Single Image [64.94932577552458]
大規模再構成モデルは、単一または複数入力画像から自動3Dコンテンツ生成の領域において大きな進歩を遂げている。
彼らの成功にもかかわらず、これらのモデルはしばしば幾何学的不正確な3Dメッシュを生成し、画像データからのみ3D形状を推論する固有の課題から生まれた。
生成した3Dメッシュの忠実度を高めるために3Dポイントクラウドデータを利用する新しいフレームワークであるLarge Image and Point Cloud Alignment Model (LAM3D)を導入する。
論文 参考訳(メタデータ) (2024-05-24T15:09:12Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
単視点画像から詳細な3Dオブジェクトを再構成するフレームワークであるGeoGS3Dを紹介する。
本稿では,GDS(Gaussian Divergence Significance)という新しい指標を提案する。
実験により、GeoGS3Dはビュー間で高い一貫性を持つ画像を生成し、高品質な3Dオブジェクトを再構成することを示した。
論文 参考訳(メタデータ) (2024-03-15T12:24:36Z) - What You See is What You GAN: Rendering Every Pixel for High-Fidelity
Geometry in 3D GANs [82.3936309001633]
3D-aware Generative Adversarial Networks (GANs) は,マルチビュー一貫性画像と3Dジオメトリを生成する学習において,顕著な進歩を見せている。
しかし、ボリュームレンダリングにおける高密度サンプリングの大幅なメモリと計算コストにより、3D GANはパッチベースのトレーニングを採用するか、後処理の2Dスーパーレゾリューションで低解像度レンダリングを採用することを余儀なくされた。
ニューラルボリュームレンダリングをネイティブ2次元画像の高解像度化に拡張する手法を提案する。
論文 参考訳(メタデータ) (2024-01-04T18:50:38Z) - Likelihood-Based Generative Radiance Field with Latent Space
Energy-Based Model for 3D-Aware Disentangled Image Representation [43.41596483002523]
本稿では,Neural Radiance Fields (NeRF) による3次元表現と,可変ボリュームレンダリングによる2次元画像処理を併用した3次元画像生成モデルを提案する。
いくつかのベンチマークデータセットの実験では、NeRF-LEBMは2D画像から3Dオブジェクト構造を推測し、新しいビューとオブジェクトで2D画像を生成し、不完全な2D画像から学び、未知のカメラポーズで2D画像から学ぶことができる。
論文 参考訳(メタデータ) (2023-04-16T23:44:41Z) - CC3D: Layout-Conditioned Generation of Compositional 3D Scenes [49.281006972028194]
本稿では,複雑な3次元シーンを2次元セマンティックなシーンレイアウトで合成する条件生成モデルであるCC3Dを紹介する。
合成3D-FRONTと実世界のKITTI-360データセットに対する評価は、我々のモデルが視覚的および幾何学的品質を改善したシーンを生成することを示す。
論文 参考訳(メタデータ) (2023-03-21T17:59:02Z) - MicroLib: A library of 3D microstructures generated from 2D micrographs
using SliceGAN [0.0]
3次元マイクロ構造データセットは、有限要素モデリングで使用される幾何学的領域を定義するために一般的に用いられる。
任意の大きさの3Dマイクロ構造データセットを統計的に生成する機械学習手法であるSliceGANを開発した。
生体材料から高強度鋼まで,87種類の組織にSliceGANを適用した結果について報告する。
論文 参考訳(メタデータ) (2022-10-12T19:13:28Z) - XDGAN: Multi-Modal 3D Shape Generation in 2D Space [60.46777591995821]
本稿では,3次元形状をコンパクトな1チャネル幾何画像に変換し,StyleGAN3と画像間翻訳ネットワークを利用して2次元空間で3次元オブジェクトを生成する手法を提案する。
生成された幾何学画像は素早く3Dメッシュに変換し、リアルタイムな3Dオブジェクト合成、可視化、インタラクティブな編集を可能にする。
近年の3次元生成モデルと比較して,より高速かつ柔軟な3次元形状生成,単一ビュー再構成,形状操作などの様々なタスクにおいて,本手法が有効であることを示す。
論文 参考訳(メタデータ) (2022-10-06T15:54:01Z) - Clean Implicit 3D Structure from Noisy 2D STEM Images [19.04251929587417]
本研究では,STEMにおける2次元センサノイズのジョイントモデルを暗黙の3次元モデルとともに学習することができることを示す。
これらのモデルを組み合わせることで,3次元信号とノイズを監視せずに解離させることができ,同時に,合成データと実データに基づくいくつかのベースラインを達成できることが示される。
論文 参考訳(メタデータ) (2022-03-29T11:00:28Z) - Accelerate 3D Object Processing via Spectral Layout [1.52292571922932]
本稿では,3次元オブジェクトに重要な情報を2次元空間に包含する手法を提案する。
提案手法は3Dオブジェクトに対して高品質な2D表現を実現し,3Dオブジェクトの処理に2Dベースの手法を用いることができる。
論文 参考訳(メタデータ) (2021-10-25T03:18:37Z) - Generating 3D structures from a 2D slice with GAN-based dimensionality
expansion [0.0]
GAN(Generative adversarial Network)は、3D画像データを生成するためのトレーニングが可能で、設計の最適化に役立ちます。
本稿では,1つの代表2次元画像を用いて高忠実度3次元データセットを合成できる生成逆ネットワークアーキテクチャであるSliceGANを紹介する。
論文 参考訳(メタデータ) (2021-02-10T18:46:17Z) - Towards Realistic 3D Embedding via View Alignment [53.89445873577063]
本稿では,3次元モデルを2次元背景画像に現実的に,かつ自動的に埋め込み,新たな画像を構成する,革新的なビューアライメントGAN(VA-GAN)を提案する。
VA-GANはテクスチャジェネレータとディファレンシャルディスクリミネーターで構成され、相互接続され、エンドツーエンドのトレーニングが可能である。
論文 参考訳(メタデータ) (2020-07-14T14:45:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。