Single Image Internal Distribution Measurement Using Non-Local
Variational Autoencoder
- URL: http://arxiv.org/abs/2204.01711v1
- Date: Sat, 2 Apr 2022 18:43:55 GMT
- Title: Single Image Internal Distribution Measurement Using Non-Local
Variational Autoencoder
- Authors: Yeahia Sarker, Abdullah-Al-Zubaer Imran, Md Hafiz Ahamed, Ripon K.
Chakrabortty, Michael J. Ryan and Sajal K. Das
- Abstract summary: This paper proposes a novel image-specific solution, namely non-local variational autoencoder (textttNLVAE)
textttNLVAE is introduced as a self-supervised strategy that reconstructs high-resolution images using disentangled information from the non-local neighbourhood.
Experimental results from seven benchmark datasets demonstrate the effectiveness of the textttNLVAE model.
- Score: 11.985083962982909
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep learning-based super-resolution methods have shown great promise,
especially for single image super-resolution (SISR) tasks. Despite the
performance gain, these methods are limited due to their reliance on copious
data for model training. In addition, supervised SISR solutions rely on local
neighbourhood information focusing only on the feature learning processes for
the reconstruction of low-dimensional images. Moreover, they fail to capitalize
on global context due to their constrained receptive field. To combat these
challenges, this paper proposes a novel image-specific solution, namely
non-local variational autoencoder (\texttt{NLVAE}), to reconstruct a
high-resolution (HR) image from a single low-resolution (LR) image without the
need for any prior training. To harvest maximum details for various receptive
regions and high-quality synthetic images, \texttt{NLVAE} is introduced as a
self-supervised strategy that reconstructs high-resolution images using
disentangled information from the non-local neighbourhood. Experimental results
from seven benchmark datasets demonstrate the effectiveness of the
\texttt{NLVAE} model. Moreover, our proposed model outperforms a number of
baseline and state-of-the-art methods as confirmed through extensive
qualitative and quantitative evaluations.
Related papers
- Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
We propose a novel SR method called MPF-Net that leverages multiple perceptual features of input images.
Our method incorporates a Multi-Perception Feature Extraction (MPFE) module to extract diverse perceptual information.
We also introduce a contrastive regularization term (CR) that improves the model's learning capability.
arXiv Detail & Related papers (2023-05-26T07:35:49Z) - Super-resolution Reconstruction of Single Image for Latent features [8.857209365343646]
Single-image super-resolution (SISR) typically focuses on restoring various degraded low-resolution (LR) images to a single high-resolution (HR) image.
It is often challenging for models to simultaneously maintain high quality and rapid sampling while preserving diversity in details and texture features.
This challenge can lead to issues such as model collapse, lack of rich details and texture features in the reconstructed HR images, and excessive time consumption for model sampling.
arXiv Detail & Related papers (2022-11-16T09:37:07Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
Real-world image super-resolution is a practical image restoration problem that aims to obtain high-quality images from in-the-wild input.
Deep learning-based methods have achieved promising restoration quality on real-world image super-resolution datasets.
We propose Real-World image Super-Resolution by Exclusionary Dual-Learning (RWSR-EDL) to address the feature diversity in perceptual- and L1-based cooperative learning.
arXiv Detail & Related papers (2022-06-06T13:28:15Z) - High-Frequency aware Perceptual Image Enhancement [0.08460698440162888]
We introduce a novel deep neural network suitable for multi-scale analysis and propose efficient model-agnostic methods.
Our model can be applied to multi-scale image enhancement problems including denoising, deblurring and single image super-resolution.
arXiv Detail & Related papers (2021-05-25T07:33:14Z) - Best-Buddy GANs for Highly Detailed Image Super-Resolution [71.13466303340192]
We consider the single image super-resolution (SISR) problem, where a high-resolution (HR) image is generated based on a low-resolution (LR) input.
Most methods along this line rely on a predefined single-LR-single-HR mapping, which is not flexible enough for the SISR task.
We propose best-buddy GANs (Beby-GAN) for rich-detail SISR. Relaxing the immutable one-to-one constraint, we allow the estimated patches to dynamically seek the best supervision.
arXiv Detail & Related papers (2021-03-29T02:58:27Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
We propose a deep Super-Resolution Residual Convolutional Generative Adversarial Network (SRResCGAN)
It follows the real-world degradation settings by adversarial training the model with pixel-wise supervision in the HR domain from its generated LR counterpart.
The proposed network exploits the residual learning by minimizing the energy-based objective function with powerful image regularization and convex optimization techniques.
arXiv Detail & Related papers (2020-05-03T00:12:38Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) generates high-resolution, realistic images at resolutions previously unseen in the literature.
Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously possible.
arXiv Detail & Related papers (2020-03-08T16:44:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.