Design considerations for a hierarchical semantic compositional
framework for medical natural language understanding
- URL: http://arxiv.org/abs/2204.02067v1
- Date: Tue, 5 Apr 2022 09:04:34 GMT
- Title: Design considerations for a hierarchical semantic compositional
framework for medical natural language understanding
- Authors: Ricky K. Taira, Anders O. Garlid, and William Speier
- Abstract summary: We describe a framework inspired by mechanisms of human cognition in an attempt to jump the NLP performance curve.
The paper describes insights from four key aspects including semantic memory, semantic composition, semantic activation.
We discuss the design of a generative semantic model and an associated semantic used to transform a free-text sentence into a logical representation of its meaning.
- Score: 3.7003326903946756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical natural language processing (NLP) systems are a key enabling
technology for transforming Big Data from clinical report repositories to
information used to support disease models and validate intervention methods.
However, current medical NLP systems fall considerably short when faced with
the task of logically interpreting clinical text. In this paper, we describe a
framework inspired by mechanisms of human cognition in an attempt to jump the
NLP performance curve. The design centers about a hierarchical semantic
compositional model (HSCM) which provides an internal substrate for guiding the
interpretation process. The paper describes insights from four key cognitive
aspects including semantic memory, semantic composition, semantic activation,
and hierarchical predictive coding. We discuss the design of a generative
semantic model and an associated semantic parser used to transform a free-text
sentence into a logical representation of its meaning. The paper discusses
supportive and antagonistic arguments for the key features of the architecture
as a long-term foundational framework.
Related papers
- Constructive Approach to Bidirectional Causation between Qualia Structure and Language Emergence [5.906966694759679]
This paper presents a novel perspective on the bidirectional causation between language emergence and relational structure of subjective experiences.
We hypothesize that languages with distributional semantics, e.g., syntactic-semantic structures, may have emerged through the process of aligning internal representations among individuals.
arXiv Detail & Related papers (2024-09-14T11:03:12Z) - Hierarchical Text-to-Vision Self Supervised Alignment for Improved Histopathology Representation Learning [64.1316997189396]
We present a novel language-tied self-supervised learning framework, Hierarchical Language-tied Self-Supervision (HLSS) for histopathology images.
Our resulting model achieves state-of-the-art performance on two medical imaging benchmarks, OpenSRH and TCGA datasets.
arXiv Detail & Related papers (2024-03-21T17:58:56Z) - An Encoding of Abstract Dialectical Frameworks into Higher-Order Logic [57.24311218570012]
This approach allows for the computer-assisted analysis of abstract dialectical frameworks.
Exemplary applications include the formal analysis and verification of meta-theoretical properties.
arXiv Detail & Related papers (2023-12-08T09:32:26Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEG is a holistic visual semantic that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge.
During fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training.
These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models.
arXiv Detail & Related papers (2023-09-24T05:43:19Z) - The Role of Semantic Parsing in Understanding Procedural Text [15.318057744502822]
We consider a deep semantic(TRIPS) and semantic role labeling as two sources of semantic parsing knowledge.
We propose PROPOLIS, a symbolic parsing-based procedural reasoning framework.
arXiv Detail & Related papers (2023-02-14T04:59:33Z) - Guiding the PLMs with Semantic Anchors as Intermediate Supervision:
Towards Interpretable Semantic Parsing [57.11806632758607]
We propose to incorporate the current pretrained language models with a hierarchical decoder network.
By taking the first-principle structures as the semantic anchors, we propose two novel intermediate supervision tasks.
We conduct intensive experiments on several semantic parsing benchmarks and demonstrate that our approach can consistently outperform the baselines.
arXiv Detail & Related papers (2022-10-04T07:27:29Z) - Hierarchical Annotation for Building A Suite of Clinical Natural
Language Processing Tasks: Progress Note Understanding [4.5939673461957335]
This work introduces a hierarchical annotation schema with three stages to address clinical text understanding, clinical reasoning, and summarization.
We created an annotated corpus based on an extensive collection of publicly available daily progress notes.
We also define a new suite of tasks, Progress Note Understanding, with three tasks utilizing the three annotation stages.
arXiv Detail & Related papers (2022-04-06T18:38:08Z) - Clinical Named Entity Recognition using Contextualized Token
Representations [49.036805795072645]
This paper introduces the technique of contextualized word embedding to better capture the semantic meaning of each word based on its context.
We pre-train two deep contextualized language models, Clinical Embeddings from Language Model (C-ELMo) and Clinical Contextual String Embeddings (C-Flair)
Explicit experiments show that our models gain dramatic improvements compared to both static word embeddings and domain-generic language models.
arXiv Detail & Related papers (2021-06-23T18:12:58Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - Automated Coding of Under-Studied Medical Concept Domains: Linking
Physical Activity Reports to the International Classification of Functioning,
Disability, and Health [22.196642357767338]
Many domains of medical concepts lack well-developed terminologies that can support effective coding of medical text.
We present a framework for developing natural language processing (NLP) technologies for automated coding of under-studied types of medical information.
arXiv Detail & Related papers (2020-11-27T20:02:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.