Semi-supervised Semantic Segmentation with Error Localization Network
- URL: http://arxiv.org/abs/2204.02078v1
- Date: Tue, 5 Apr 2022 09:42:21 GMT
- Title: Semi-supervised Semantic Segmentation with Error Localization Network
- Authors: Donghyeon Kwon and Suha Kwak
- Abstract summary: This paper studies semi-supervised learning of semantic segmentation.
It assumes that only a small portion of training images are labeled and the others remain unlabeled.
The unlabeled images are usually assigned pseudo labels to be used in training.
We present a novel method that resolves this chronic issue of pseudo labeling.
- Score: 16.42221567235617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies semi-supervised learning of semantic segmentation, which
assumes that only a small portion of training images are labeled and the others
remain unlabeled. The unlabeled images are usually assigned pseudo labels to be
used in training, which however often causes the risk of performance
degradation due to the confirmation bias towards errors on the pseudo labels.
We present a novel method that resolves this chronic issue of pseudo labeling.
At the heart of our method lies error localization network (ELN), an auxiliary
module that takes an image and its segmentation prediction as input and
identifies pixels whose pseudo labels are likely to be wrong. ELN enables
semi-supervised learning to be robust against inaccurate pseudo labels by
disregarding label noises during training and can be naturally integrated with
self-training and contrastive learning. Moreover, we introduce a new learning
strategy for ELN that simulates plausible and diverse segmentation errors
during training of ELN to enhance its generalization. Our method is evaluated
on PASCAL VOC 2012 and Cityscapes, where it outperforms all existing methods in
every evaluation setting.
Related papers
- NP-SemiSeg: When Neural Processes meet Semi-Supervised Semantic
Segmentation [87.50830107535533]
Semi-supervised semantic segmentation involves assigning pixel-wise labels to unlabeled images at training time.
Current approaches to semi-supervised semantic segmentation work by predicting pseudo-labels for each pixel from a class-wise probability distribution output by a model.
In this work, we move one step forward by adapting NPs to semi-supervised semantic segmentation, resulting in a new model called NP-SemiSeg.
arXiv Detail & Related papers (2023-08-05T12:42:15Z) - Estimating label quality and errors in semantic segmentation data via
any model [19.84626033109009]
We study methods to score label quality, such that the images with the lowest scores are least likely to be correctly labeled.
This helps prioritize what data to review in order to ensure a high-quality training/evaluation dataset.
arXiv Detail & Related papers (2023-07-11T07:29:09Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
Pseudo-labels are widely employed in weakly supervised 3D segmentation tasks where only sparse ground-truth labels are available for learning.
We propose a novel learning strategy to regularize the generated pseudo-labels and effectively narrow the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2023-05-25T08:19:31Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
We propose a label distribution perspective for PU learning in this paper.
Motivated by this, we propose to pursue the label distribution consistency between predicted and ground-truth label distributions.
Experiments on three benchmark datasets validate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-12-06T07:38:29Z) - Pseudo-Label Noise Suppression Techniques for Semi-Supervised Semantic
Segmentation [21.163070161951868]
Semi-consuming learning (SSL) can reduce the need for large labelled datasets by incorporating unsupervised data into the training.
Current SSL approaches use an initially supervised trained model to generate predictions for unlabelled images, called pseudo-labels.
We use three mechanisms to control pseudo-label noise and errors.
arXiv Detail & Related papers (2022-10-19T09:46:27Z) - PLMCL: Partial-Label Momentum Curriculum Learning for Multi-Label Image
Classification [25.451065364433028]
Multi-label image classification aims to predict all possible labels in an image.
Existing works on partial-label learning focus on the case where each training image is annotated with only a subset of its labels.
This paper proposes a new partial-label setting in which only a subset of the training images are labeled, each with only one positive label, while the rest of the training images remain unlabeled.
arXiv Detail & Related papers (2022-08-22T01:23:08Z) - GuidedMix-Net: Semi-supervised Semantic Segmentation by Using Labeled
Images as Reference [90.5402652758316]
We propose a novel method for semi-supervised semantic segmentation named GuidedMix-Net.
It uses labeled information to guide the learning of unlabeled instances.
It achieves competitive segmentation accuracy and significantly improves the mIoU by +7$%$ compared to previous approaches.
arXiv Detail & Related papers (2021-12-28T06:48:03Z) - A Closer Look at Self-training for Zero-Label Semantic Segmentation [53.4488444382874]
Being able to segment unseen classes not observed during training is an important technical challenge in deep learning.
Prior zero-label semantic segmentation works approach this task by learning visual-semantic embeddings or generative models.
We propose a consistency regularizer to filter out noisy pseudo-labels by taking the intersections of the pseudo-labels generated from different augmentations of the same image.
arXiv Detail & Related papers (2021-04-21T14:34:33Z) - In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning [53.1047775185362]
Pseudo-labeling (PL) is a general SSL approach that does not have this constraint but performs relatively poorly in its original formulation.
We argue that PL underperforms due to the erroneous high confidence predictions from poorly calibrated models.
We propose an uncertainty-aware pseudo-label selection (UPS) framework which improves pseudo labeling accuracy by drastically reducing the amount of noise encountered in the training process.
arXiv Detail & Related papers (2021-01-15T23:29:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.