論文の概要: Hybrid Predictive Coding: Inferring, Fast and Slow
- arxiv url: http://arxiv.org/abs/2204.02169v1
- Date: Tue, 5 Apr 2022 12:52:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-06 12:56:22.732516
- Title: Hybrid Predictive Coding: Inferring, Fast and Slow
- Title(参考訳): ハイブリッド予測符号化 - 推論,高速,低速化
- Authors: Alexander Tschantz, Beren Millidge, Anil K Seth, Christopher L Buckley
- Abstract要約: 本稿では,反復型と償却型の両方を原則的に組み合わせたハイブリッド予測符号化ネットワークを提案する。
我々は,本モデルが本質的に不確実性に敏感であり,最小計算費用を用いて正確な信念を得るためにバランスを適応的にバランスさせることを実証した。
- 参考スコア(独自算出の注目度): 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predictive coding is an influential model of cortical neural activity. It
proposes that perceptual beliefs are furnished by sequentially minimising
"prediction errors" - the differences between predicted and observed data.
Implicit in this proposal is the idea that perception requires multiple cycles
of neural activity. This is at odds with evidence that several aspects of
visual perception - including complex forms of object recognition - arise from
an initial "feedforward sweep" that occurs on fast timescales which preclude
substantial recurrent activity. Here, we propose that the feedforward sweep can
be understood as performing amortized inference and recurrent processing can be
understood as performing iterative inference. We propose a hybrid predictive
coding network that combines both iterative and amortized inference in a
principled manner by describing both in terms of a dual optimization of a
single objective function. We show that the resulting scheme can be implemented
in a biologically plausible neural architecture that approximates Bayesian
inference utilising local Hebbian update rules. We demonstrate that our hybrid
predictive coding model combines the benefits of both amortized and iterative
inference -- obtaining rapid and computationally cheap perceptual inference for
familiar data while maintaining the context-sensitivity, precision, and sample
efficiency of iterative inference schemes. Moreover, we show how our model is
inherently sensitive to its uncertainty and adaptively balances iterative and
amortized inference to obtain accurate beliefs using minimum computational
expense. Hybrid predictive coding offers a new perspective on the functional
relevance of the feedforward and recurrent activity observed during visual
perception and offers novel insights into distinct aspects of visual
phenomenology.
- Abstract(参考訳): 予測符号化は皮質神経活動に影響を及ぼすモデルである。
予測誤差(prediction error) - 予測データと観測データの違いを逐次最小化することで知覚的信念を提供する。
この提案では暗黙的であり、知覚は複数の神経活動のサイクルを必要とするという考えである。
これは、複雑な物体認識を含む視覚知覚のいくつかの側面が、実質的な反復活動を妨げる高速な時間スケールで起こる初期の「フィードフォワード・スイープ」から生じるという証拠と矛盾している。
本稿では,フィードフォワードスイープを償却推論と解釈し,繰り返し処理を反復推論と解釈する。
本論文では,単目的関数の双対最適化という観点から,反復的および漸近的推論を原理的に結合したハイブリッド予測符号化ネットワークを提案する。
提案手法は, 局所ヘビアン更新規則を用いたベイズ推定を近似した, 生物学的に妥当なニューラルネットワークアーキテクチャで実装可能であることを示す。
このハイブリッド予測符号化モデルは,反復推論方式の文脈感性,精度,サンプル効率を維持しつつ,慣れ親しんだデータに対する迅速かつ計算上安価な知覚的推論を実現するという,漸近的推論と反復的推論の両方の利点を組み合わせることを実証する。
さらに、我々のモデルは本質的に不確実性に敏感であり、最小の計算費用を用いて正確な信念を得るために反復的および償却的推論を適応的にバランスしていることを示す。
ハイブリッド予測符号化は、視覚知覚中に観察されるフィードフォワードおよびリカレント活動の機能的関連性に関する新たな視点を提供し、視覚表現論の異なる側面に対する新たな洞察を提供する。
関連論文リスト
- Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Adversarial robustness of amortized Bayesian inference [3.308743964406687]
償却ベイズ推論は、当初シミュレーションデータ上の推論ネットワークのトレーニングに計算コストを投資することを目的としている。
観測対象のほとんど認識不能な摂動は、予測された後部および非現実的な後部予測標本に劇的な変化をもたらす可能性があることを示す。
本研究では,条件密度推定器のフィッシャー情報をペナライズした計算効率の高い正規化手法を提案する。
論文 参考訳(メタデータ) (2023-05-24T10:18:45Z) - Understanding Self-Predictive Learning for Reinforcement Learning [61.62067048348786]
強化学習のための自己予測学習の学習ダイナミクスについて検討する。
本稿では,2つの表現を同時に学習する新しい自己予測アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-06T20:43:37Z) - Self-Regulated Learning for Egocentric Video Activity Anticipation [147.9783215348252]
自己制御学習(SRL)は、中間表現を連続的に制御し、現在のタイムスタンプのフレームにおける新しい情報を強調する表現を作り出すことを目的としている。
SRLは2つのエゴセントリックなビデオデータセットと2つの第三者のビデオデータセットにおいて、既存の最先端技術よりも大幅に優れています。
論文 参考訳(メタデータ) (2021-11-23T03:29:18Z) - Efficient Iterative Amortized Inference for Learning Symmetric and
Disentangled Multi-Object Representations [8.163697683448811]
本稿では,オブジェクト中心表現の教師なし学習のための効率的なフレームワークであるEfficientMORLを紹介する。
対称性と非絡み合いの両方を必要とすることによる最適化の課題は、高コスト反復的償却推論によって解決できることを示す。
標準のマルチオブジェクト・ベンチマークでは,強いオブジェクト分解と歪みを示しながら,ほぼ1桁の高速なトレーニングとテスト時間推定を実現している。
論文 参考訳(メタデータ) (2021-06-07T14:02:49Z) - Parsimonious Inference [0.0]
parsimonious inferenceは任意のアーキテクチャ上の推論の情報理論的な定式化である。
提案手法は,効率的な符号化と巧妙なサンプリング戦略を組み合わせて,クロスバリデーションを伴わない予測アンサンブルを構築する。
論文 参考訳(メタデータ) (2021-03-03T04:13:14Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Relaxing the Constraints on Predictive Coding Models [62.997667081978825]
予測符号化(英: Predictive coding)は、脳が行う主計算が予測誤差の最小化であるとする皮質機能の影響力のある理論である。
アルゴリズムの標準的な実装は、同じ前方と後方の重み、後方の非線形微分、1-1エラーユニット接続といった、潜在的に神経的に予測できない特徴を含んでいる。
本稿では,これらの特徴はアルゴリズムに不可欠なものではなく,Hebbianの更新ルールを用いてパラメータセットを直接あるいは学習することで,学習性能に悪影響を及ぼすことなく除去可能であることを示す。
論文 参考訳(メタデータ) (2020-10-02T15:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。