Parameter-Efficient Neural Reranking for Cross-Lingual and Multilingual
Retrieval
- URL: http://arxiv.org/abs/2204.02292v1
- Date: Tue, 5 Apr 2022 15:44:27 GMT
- Title: Parameter-Efficient Neural Reranking for Cross-Lingual and Multilingual
Retrieval
- Authors: Robert Litschko and Ivan Vuli\'c and Goran Glava\v{s}
- Abstract summary: State-of-the-art neural (re)rankers are notoriously data hungry.
Current approaches typically transfer rankers trained on English data to other languages and cross-lingual setups by means of multilingual encoders.
We show that two parameter-efficient approaches to cross-lingual transfer, namely Sparse Fine-Tuning Masks (SFTMs) and Adapters, allow for a more lightweight and more effective zero-shot transfer.
- Score: 66.69799641522133
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: State-of-the-art neural (re)rankers are notoriously data hungry which - given
the lack of large-scale training data in languages other than English - makes
them rarely used in multilingual and cross-lingual retrieval settings. Current
approaches therefore typically transfer rankers trained on English data to
other languages and cross-lingual setups by means of multilingual encoders:
they fine-tune all the parameters of a pretrained massively multilingual
Transformer (MMT, e.g., multilingual BERT) on English relevance judgments and
then deploy it in the target language. In this work, we show that two
parameter-efficient approaches to cross-lingual transfer, namely Sparse
Fine-Tuning Masks (SFTMs) and Adapters, allow for a more lightweight and more
effective zero-shot transfer to multilingual and cross-lingual retrieval tasks.
We first train language adapters (or SFTMs) via Masked Language Modelling and
then train retrieval (i.e., reranking) adapters (SFTMs) on top while keeping
all other parameters fixed. At inference, this modular design allows us to
compose the ranker by applying the task adapter (or SFTM) trained with source
language data together with the language adapter (or SFTM) of a target
language. Besides improved transfer performance, these two approaches offer
faster ranker training, with only a fraction of parameters being updated
compared to full MMT fine-tuning. We benchmark our models on the CLEF-2003
benchmark, showing that our parameter-efficient methods outperform standard
zero-shot transfer with full MMT fine-tuning, while enabling modularity and
reducing training times. Further, we show on the example of Swahili and Somali
that, for low(er)-resource languages, our parameter-efficient neural re-rankers
can improve the ranking of the competitive machine translation-based ranker.
Related papers
- Self-Augmentation Improves Zero-Shot Cross-Lingual Transfer [92.80671770992572]
Cross-lingual transfer is a central task in multilingual NLP.
Earlier efforts on this task use parallel corpora, bilingual dictionaries, or other annotated alignment data.
We propose a simple yet effective method, SALT, to improve the zero-shot cross-lingual transfer.
arXiv Detail & Related papers (2023-09-19T19:30:56Z) - Parameter-Efficient Cross-lingual Transfer of Vision and Language Models
via Translation-based Alignment [31.885608173448368]
Pre-trained vision and language models such as CLIP have witnessed remarkable success in connecting images and texts with a primary focus on English texts.
disparities in performance among different languages have been observed due to uneven resource availability.
We propose a new parameter-efficient cross-lingual transfer learning framework that utilizes a translation-based alignment method to mitigate multilingual disparities.
arXiv Detail & Related papers (2023-05-02T14:09:02Z) - Language-Aware Multilingual Machine Translation with Self-Supervised
Learning [13.250011906361273]
Multilingual machine translation (MMT) benefits from cross-lingual transfer but is a challenging multitask optimization problem.
Self-supervised learning approaches have shown promise by improving translation performance as complementary tasks to the MMT task.
We propose a novel but simple SSL task, concurrent denoising, that co-trains with the MMT task by concurrently denoising monolingual data on both the encoder and decoder.
arXiv Detail & Related papers (2023-02-10T01:34:24Z) - Language-Family Adapters for Low-Resource Multilingual Neural Machine
Translation [129.99918589405675]
Large multilingual models trained with self-supervision achieve state-of-the-art results in a wide range of natural language processing tasks.
Multilingual fine-tuning improves performance on low-resource languages but requires modifying the entire model and can be prohibitively expensive.
We propose training language-family adapters on top of mBART-50 to facilitate cross-lingual transfer.
arXiv Detail & Related papers (2022-09-30T05:02:42Z) - High-resource Language-specific Training for Multilingual Neural Machine
Translation [109.31892935605192]
We propose the multilingual translation model with the high-resource language-specific training (HLT-MT) to alleviate the negative interference.
Specifically, we first train the multilingual model only with the high-resource pairs and select the language-specific modules at the top of the decoder.
HLT-MT is further trained on all available corpora to transfer knowledge from high-resource languages to low-resource languages.
arXiv Detail & Related papers (2022-07-11T14:33:13Z) - Continual Learning in Multilingual NMT via Language-Specific Embeddings [92.91823064720232]
It consists in replacing the shared vocabulary with a small language-specific vocabulary and fine-tuning the new embeddings on the new language's parallel data.
Because the parameters of the original model are not modified, its performance on the initial languages does not degrade.
arXiv Detail & Related papers (2021-10-20T10:38:57Z) - Multilingual Transfer Learning for QA Using Translation as Data
Augmentation [13.434957024596898]
We explore strategies that improve cross-lingual transfer by bringing the multilingual embeddings closer in the semantic space.
We propose two novel strategies, language adversarial training and language arbitration framework, which significantly improve the (zero-resource) cross-lingual transfer performance.
Empirically, we show that the proposed models outperform the previous zero-shot baseline on the recently introduced multilingual MLQA and TyDiQA datasets.
arXiv Detail & Related papers (2020-12-10T20:29:34Z) - Pre-training Multilingual Neural Machine Translation by Leveraging
Alignment Information [72.2412707779571]
mRASP is an approach to pre-train a universal multilingual neural machine translation model.
We carry out experiments on 42 translation directions across a diverse setting, including low, medium, rich resource, and as well as transferring to exotic language pairs.
arXiv Detail & Related papers (2020-10-07T03:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.