論文の概要: Generative Enriched Sequential Learning (ESL) Approach for Molecular
Design via Augmented Domain Knowledge
- arxiv url: http://arxiv.org/abs/2204.02474v1
- Date: Tue, 5 Apr 2022 20:16:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-07 14:49:15.404989
- Title: Generative Enriched Sequential Learning (ESL) Approach for Molecular
Design via Augmented Domain Knowledge
- Title(参考訳): 拡張ドメイン知識による分子設計のためのジェネレイティブエンリッチ・シーケンシャル・ラーニング(esl)アプローチ
- Authors: Mohammad Sajjad Ghaemi, Karl Grantham, Isaac Tamblyn, Yifeng Li, Hsu
Kiang Ooi
- Abstract要約: 生成機械学習技術は、分子指紋表現に基づく新しい化学構造を生成することができる。
教師付きドメイン知識の欠如は、学習手順がトレーニングデータに見られる一般的な分子に相対的に偏っていることを誤解させる可能性がある。
この欠点は、例えば薬物類似度スコア(QED)の定量的推定など、ドメイン知識でトレーニングデータを増強することで軽減した。
- 参考スコア(独自算出の注目度): 1.4410716345002657
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deploying generative machine learning techniques to generate novel chemical
structures based on molecular fingerprint representation has been well
established in molecular design. Typically, sequential learning (SL) schemes
such as hidden Markov models (HMM) and, more recently, in the sequential deep
learning context, recurrent neural network (RNN) and long short-term memory
(LSTM) were used extensively as generative models to discover unprecedented
molecules. To this end, emission probability between two states of atoms plays
a central role without considering specific chemical or physical properties.
Lack of supervised domain knowledge can mislead the learning procedure to be
relatively biased to the prevalent molecules observed in the training data that
are not necessarily of interest. We alleviated this drawback by augmenting the
training data with domain knowledge, e.g. quantitative estimates of the
drug-likeness score (QEDs). As such, our experiments demonstrated that with
this subtle trick called enriched sequential learning (ESL), specific patterns
of particular interest can be learnt better, which led to generating de novo
molecules with ameliorated QEDs.
- Abstract(参考訳): 分子指紋表現に基づく新しい化学構造を生成するための生成機械学習技術が分子設計において確立されている。
典型的には、隠れマルコフモデル(HMM)のようなシーケンシャルラーニング(SL)スキームや、最近ではシーケンシャルディープラーニングの文脈において、リカレントニューラルネットワーク(RNN)と長寿命メモリ(LSTM)が前例のない分子を発見するための生成モデルとして広く用いられた。
この目的のために、2つの原子状態の間の放出確率は、特定の化学的または物理的性質を考慮せずに中心的な役割を果たす。
教師付きドメイン知識の欠如は、学習手順が必ずしも興味が持たない訓練データに見られる一般的な分子に比較的偏っていることを誤解させる可能性がある。
この欠点は、例えば薬物類似度スコア(QED)の定量的推定など、ドメイン知識でトレーニングデータを増強することで軽減した。
そこで本実験では, 強化逐次学習(enriched sequence learning, ESL)と呼ばれる微妙な手法を用いて, 特定の興味のパターンをよりよく学習し, 改良されたQEDでデノボ分子を生成できることを実証した。
関連論文リスト
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - Active Deep Kernel Learning of Molecular Functionalities: Realizing
Dynamic Structural Embeddings [0.26716003713321473]
本稿では,Deep Kernel Learning (DKL) を用いた分子探索における能動的学習手法について検討する。
DKLは構造と性質を関連付けることによってより全体論的視点を提供し、分子機能に優先順位をつける潜在空間を創出する。
特定の化合物を取り巻く排除領域の形成は、基盤となる機能を持つ未発見領域を示す。
論文 参考訳(メタデータ) (2024-03-02T15:34:31Z) - From molecules to scaffolds to functional groups: building context-dependent molecular representation via multi-channel learning [10.025809630976065]
本稿では,より堅牢で一般化可能な化学知識を学習する,新しい事前学習フレームワークを提案する。
提案手法は,種々の分子特性ベンチマークにおける競合性能を示す。
論文 参考訳(メタデータ) (2023-11-05T23:47:52Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - A Systematic Survey of Chemical Pre-trained Models [38.57023440288189]
ディープニューラルネットワーク(DNN)をスクラッチからトレーニングするには、しばしば大量のラベル付き分子を必要とする。
この問題を緩和するため、分子事前学習モデル(CPM)に多大な努力が注がれている。
CPMは、大規模未ラベルの分子データベースを使用して事前訓練され、特定の下流タスクに対して微調整される。
論文 参考訳(メタデータ) (2022-10-29T03:53:11Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Graph-based Molecular Representation Learning [59.06193431883431]
分子表現学習(MRL)は、機械学習と化学科学を結びつけるための重要なステップである。
近年、MRLは、特に深層分子グラフ学習に基づく手法において、かなりの進歩を遂げている。
論文 参考訳(メタデータ) (2022-07-08T17:43:20Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
生成微分方程式(SDE)にアウト・オブ・ディストリビューション制御を組み込んだスコアベース拡散方式を提案する。
いくつかの新しい分子は現実世界の薬物の基本的な要件を満たしていないため、MOODは特性予測器からの勾配を利用して条件付き生成を行う。
我々はMOODがトレーニング分布を超えて化学空間を探索できることを実験的に検証し、既存の方法で見いだされた分子、そして元のトレーニングプールの上位0.01%までも生成できることを実証した。
論文 参考訳(メタデータ) (2022-06-06T06:17:11Z) - Knowledge-informed Molecular Learning: A Survey on Paradigm Transfer [20.893861195128643]
機械学習、特にディープラーニングは、生化学領域における分子研究を著しく推進している。
伝統的に、そのような研究のためのモデリングは、いくつかのパラダイムを中心に行われてきた。
純粋にデータ駆動モデルの生成と解読性を高めるため、研究者はこれらの分子研究モデルに生化学的ドメイン知識を組み込んだ。
論文 参考訳(メタデータ) (2022-02-17T06:18:02Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
本稿では,MoLFormerと呼ばれる効率的なトランスフォーマーエンコーダモデルのトレーニングにより得られた分子埋め込みについて述べる。
実験の結果,グラフベースおよび指紋ベースによる教師付き学習ベースラインと比較して,学習された分子表現が競合的に機能することが確認された。
論文 参考訳(メタデータ) (2021-06-17T14:33:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。