DAGAM: Data Augmentation with Generation And Modification
- URL: http://arxiv.org/abs/2204.02633v1
- Date: Wed, 6 Apr 2022 07:20:45 GMT
- Title: DAGAM: Data Augmentation with Generation And Modification
- Authors: Byeong-Cheol Jo, Tak-Sung Heo, Yeongjoon Park, Yongmin Yoo, Won Ik
Cho, Kyungsun Kim
- Abstract summary: In pre-trained language models, under-fitting often occurs due to the size of the model being very large.
We introduce three data augmentation schemes that help reduce underfitting problems of large-scale language models.
- Score: 3.063234089519162
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text classification is a representative downstream task of natural language
processing, and has exhibited excellent performance since the advent of
pre-trained language models based on Transformer architecture. However, in
pre-trained language models, under-fitting often occurs due to the size of the
model being very large compared to the amount of available training data. Along
with significant importance of data collection in modern machine learning
paradigm, studies have been actively conducted for natural language data
augmentation. In light of this, we introduce three data augmentation schemes
that help reduce underfitting problems of large-scale language models.
Primarily we use a generation model for data augmentation, which is defined as
Data Augmentation with Generation (DAG). Next, we augment data using text
modification techniques such as corruption and word order change (Data
Augmentation with Modification, DAM). Finally, we propose Data Augmentation
with Generation And Modification (DAGAM), which combines DAG and DAM techniques
for a boosted performance. We conduct data augmentation for six benchmark
datasets of text classification task, and verify the usefulness of DAG, DAM,
and DAGAM through BERT-based fine-tuning and evaluation, deriving better
results compared to the performance with original datasets.
Related papers
- Training Data for Large Language Model [2.1178416840822027]
ChatGPT surpassed previous models in terms of parameters and the scale of its pretraining corpus.
ChatGPT achieved revolutionary performance improvements through fine-tuning on a vast amount of high-quality, human-annotated data.
This paper summarizes the current state of pretraining and fine-tuning data for training large-scale language models.
arXiv Detail & Related papers (2024-11-12T11:09:58Z) - GASE: Generatively Augmented Sentence Encoding [0.0]
We propose an approach to enhance sentence embeddings by applying generative text models for data augmentation at inference time.
Generatively Augmented Sentence uses diverse synthetic variants of input texts generated by paraphrasing, summarising or extracting keywords.
We find that generative augmentation leads to larger performance improvements for embedding models with lower baseline performance.
arXiv Detail & Related papers (2024-11-07T17:53:47Z) - Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - Data Augmentation for Image Classification using Generative AI [8.74488498507946]
Data augmentation is a promising solution to expanding the dataset size.
Recent approaches use generative AI models to improve dataset diversity.
We propose the Automated Generative Data Augmentation (AGA)
arXiv Detail & Related papers (2024-08-31T21:16:43Z) - Unifying Structured Data as Graph for Data-to-Text Pre-Training [69.96195162337793]
Data-to-text (D2T) generation aims to transform structured data into natural language text.
Data-to-text pre-training has proved to be powerful in enhancing D2T generation.
We propose a structure-enhanced pre-training method for D2T generation by designing a structure-enhanced Transformer.
arXiv Detail & Related papers (2024-01-02T12:23:49Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
We investigate data quality for code and find that making the code more structured and readable leads to improved code generation performance of the system.
We build a novel data-cleaning pipeline that uses these principles to transform existing programs.
We evaluate our approach on two challenging algorithmic code generation benchmarks and find that fine-tuning CodeLLaMa-7B improves the performance by up to 30% compared to fine-tuning on the original dataset.
arXiv Detail & Related papers (2023-11-25T02:45:50Z) - Investigating Masking-based Data Generation in Language Models [0.0]
A feature of BERT and models with similar architecture is the objective of masked language modeling.
Data augmentation is a data-driven technique widely used in machine learning.
Recent studies have utilized masked language model to generate artificially augmented data for NLP downstream tasks.
arXiv Detail & Related papers (2023-06-16T16:48:27Z) - Diversify Your Vision Datasets with Automatic Diffusion-Based
Augmentation [66.6546668043249]
ALIA (Automated Language-guided Image Augmentation) is a method which utilizes large vision and language models to automatically generate natural language descriptions of a dataset's domains.
To maintain data integrity, a model trained on the original dataset filters out minimal image edits and those which corrupt class-relevant information.
We show that ALIA is able to surpasses traditional data augmentation and text-to-image generated data on fine-grained classification tasks.
arXiv Detail & Related papers (2023-05-25T17:43:05Z) - Efficient Training of Language Models to Fill in the Middle [17.118891860985123]
We show that autoregressive language models can learn to infill text after we apply a straightforward transformation to the dataset.
We use these ablations to prescribe strong default settings and best practices to train FIM models.
We have released our best infilling model trained with best practices in our API, and release our infilling benchmarks to aid future research.
arXiv Detail & Related papers (2022-07-28T17:40:47Z) - Curriculum-Based Self-Training Makes Better Few-Shot Learners for
Data-to-Text Generation [56.98033565736974]
We propose Curriculum-Based Self-Training (CBST) to leverage unlabeled data in a rearranged order determined by the difficulty of text generation.
Our method can outperform fine-tuning and task-adaptive pre-training methods, and achieve state-of-the-art performance in the few-shot setting of data-to-text generation.
arXiv Detail & Related papers (2022-06-06T16:11:58Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.