GASE: Generatively Augmented Sentence Encoding
- URL: http://arxiv.org/abs/2411.04914v1
- Date: Thu, 07 Nov 2024 17:53:47 GMT
- Title: GASE: Generatively Augmented Sentence Encoding
- Authors: Manuel Frank, Haithem Afli,
- Abstract summary: We propose an approach to enhance sentence embeddings by applying generative text models for data augmentation at inference time.
Generatively Augmented Sentence uses diverse synthetic variants of input texts generated by paraphrasing, summarising or extracting keywords.
We find that generative augmentation leads to larger performance improvements for embedding models with lower baseline performance.
- Score: 0.0
- License:
- Abstract: We propose an approach to enhance sentence embeddings by applying generative text models for data augmentation at inference time. Unlike conventional data augmentation that utilises synthetic training data, our approach does not require access to model parameters or the computational resources typically required for fine-tuning state-of-the-art models. Generatively Augmented Sentence Encoding uses diverse linguistic synthetic variants of input texts generated by paraphrasing, summarising, or extracting keywords, followed by pooling the original and synthetic embeddings. Experimental results on the Massive Text Embedding Benchmark for Semantic Textual Similarity (STS) demonstrate performance improvements across a range of embedding models using different generative models for augmentation. We find that generative augmentation leads to larger performance improvements for embedding models with lower baseline performance. These findings suggest that integrating generative augmentation at inference time adds semantic diversity and can enhance the robustness and generalizability of sentence embeddings for embedding models. Our results show that the degree to which generative augmentation can improve STS performance depends not only on the embedding model but also on the dataset. From a broader perspective, the approach allows trading training for inference compute.
Related papers
- Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
Energy-based Diffusion Language Model (EDLM) is an energy-based model operating at the full sequence level for each diffusion step.
Our framework offers a 1.3$times$ sampling speedup over existing diffusion models.
arXiv Detail & Related papers (2024-10-28T17:25:56Z) - Improving Discrete Diffusion Models via Structured Preferential Generation [25.784316302130875]
This paper tackles the challenge of improving discrete diffusion models by introducing a structured forward process.
Our approach biases the generative process to produce certain categories before others, resulting in a notable improvement in log-likelihood scores on the text8 dataset.
arXiv Detail & Related papers (2024-05-28T07:11:30Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
We propose DistDiff, a training-free data expansion framework based on the distribution-aware diffusion model.
DistDiff consistently enhances accuracy across a diverse range of datasets compared to models trained solely on original data.
arXiv Detail & Related papers (2024-03-11T14:07:53Z) - Unified Generation, Reconstruction, and Representation: Generalized Diffusion with Adaptive Latent Encoding-Decoding [90.77521413857448]
Deep generative models are anchored in three core capabilities -- generating new instances, reconstructing inputs, and learning compact representations.
We introduce Generalized generative adversarial-Decoding Diffusion Probabilistic Models (EDDPMs)
EDDPMs generalize the Gaussian noising-denoising in standard diffusion by introducing parameterized encoding-decoding.
Experiments on text, proteins, and images demonstrate the flexibility to handle diverse data and tasks.
arXiv Detail & Related papers (2024-02-29T10:08:57Z) - Data Augmentation for Neural Machine Translation using Generative
Language Model [1.5500145658862499]
The scarcity of large parallel corpora remains the main bottleneck in Neural Machine Translation.
Data augmentation is a technique that enhances the performance of data-hungry models by generating synthetic data instead of collecting new ones.
We explore prompt-based data augmentation approaches that leverage large-scale language models such as ChatGPT.
arXiv Detail & Related papers (2023-07-26T02:12:58Z) - Cross-Modal Generative Augmentation for Visual Question Answering [34.9601948665926]
This paper introduces a generative model for data augmentation by leveraging the correlations among multiple modalities.
The proposed model is able to quantify the confidence of augmented data by its generative probability, and can be jointly updated with a downstream pipeline.
arXiv Detail & Related papers (2021-05-11T04:51:26Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z) - Rethinking embedding coupling in pre-trained language models [46.11201932668366]
We re-evaluate the standard practice of sharing weights between input and output embeddings in pre-trained language models.
We show that decoupled embeddings provide increased modeling flexibility, allowing us to significantly improve the efficiency of parameter allocation.
We are able to train models that achieve strong performance on the XTREME benchmark without increasing the number of parameters at the fine-tuning stage.
arXiv Detail & Related papers (2020-10-24T07:43:00Z) - Generative Data Augmentation for Commonsense Reasoning [75.26876609249197]
G-DAUGC is a novel generative data augmentation method that aims to achieve more accurate and robust learning in the low-resource setting.
G-DAUGC consistently outperforms existing data augmentation methods based on back-translation.
Our analysis demonstrates that G-DAUGC produces a diverse set of fluent training examples, and that its selection and training approaches are important for performance.
arXiv Detail & Related papers (2020-04-24T06:12:10Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.