Accelerated quantum adiabatic transfer in superconducting qubits
- URL: http://arxiv.org/abs/2204.02647v2
- Date: Tue, 30 Aug 2022 03:49:55 GMT
- Title: Accelerated quantum adiabatic transfer in superconducting qubits
- Authors: Wen Zheng, Jianwen Xu, Zhimin Wang, Yuqian Dong, Dong Lan, Xinsheng
Tan, and Yang Yu
- Abstract summary: Quantum adiabatic transfer is widely used in quantum computation and quantum simulation.
Here we demonstrate quantum adiabatic state transfers that jump along geodesics in one-qubit and two-qubit superconducting transmons.
- Score: 8.399741899540025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum adiabatic transfer is widely used in quantum computation and quantum
simulation. However, the transfer speed is limited by the quantum adiabatic
approximation condition, which hinders its application in quantum systems with
a short decoherence time. Here we demonstrate quantum adiabatic state transfers
that jump along geodesics in one-qubit and two-qubit superconducting transmons.
This approach possesses the advantages of speed, robustness, and high fidelity
compared with the usual adiabatic process. Our protocol provides feasible
strategies for improving state manipulation and gate operation in
superconducting quantum circuits.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Controllable non-Hermitian qubit-qubit Coupling in Superconducting quantum Circuit [3.18175475159604]
We study the Energy level degeneracy and quantum state evolution in tunable coupling superconducting quantum circuit.
The qubit's effective energy level and damping rate can be continually tuned in superconducting circuit.
The controllable non-Hermiticity provides new insights and methods for exploring the unconventional quantum effects in superconducting quantum circuit.
arXiv Detail & Related papers (2024-04-04T11:58:03Z) - Enhanced quantum state transfer: Circumventing quantum chaotic behavior [35.74056021340496]
We show how to transfer few-particle quantum states in a two-dimensional quantum network.
Our approach paves the way to short-distance quantum communication for connecting distributed quantum processors or registers.
arXiv Detail & Related papers (2024-02-01T19:00:03Z) - Accelerated adiabatic passage of a single electron spin qubit in quantum
dots [1.5818487311072416]
We experimentally demonstrate the transitionless quantum driving (TLQD) of the shortcuts to adiabaticity in gate-defined semiconductor quantum dots (QDs)
For a given efficiency of quantum state transfer, the acceleration can be more than twofold.
The modified TLQD is proposed and demonstrated in experiment by enlarging the width of the counter-diabatic drivings.
arXiv Detail & Related papers (2023-12-20T15:56:31Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Robust and Fast Quantum State Transfer on Superconducting Circuits [11.54027913519915]
We propose a new scheme to implement the quantum state transfer of high fidelity and long distance.
Our scheme will shed light on quantum computation with long chain and high-fidelity quantum state transfer.
arXiv Detail & Related papers (2022-11-15T06:06:56Z) - Simulating groundstate and dynamical quantum phase transitions on a
superconducting quantum computer [0.11744028458220425]
We simulate the groundstate of the quantum Ising model through its quantum critical point on a superconducting quantum device.
Our approach avoids finite-size scaling effects by using sequential quantum circuits inspired by infinite matrix product states.
arXiv Detail & Related papers (2022-05-25T18:05:53Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.