論文の概要: Risk budget portfolios with convex Non-negative Matrix Factorization
- arxiv url: http://arxiv.org/abs/2204.02757v2
- Date: Mon, 12 Jun 2023 11:18:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 03:08:30.679312
- Title: Risk budget portfolios with convex Non-negative Matrix Factorization
- Title(参考訳): 凸非負行列因子化を伴うリスク予算ポートフォリオ
- Authors: Bruno Spilak and Wolfgang Karl H\"ardle
- Abstract要約: 凸非負行列因子化(NMF)を用いたリスクファクタの予算化に基づくポートフォリオ割当手法を提案する。
我々は、暗号通貨と伝統的資産の2つの長期的グローバルポートフォリオを対象とするボラティリティの文脈で、我々の手法を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose a portfolio allocation method based on risk factor budgeting using
convex Nonnegative Matrix Factorization (NMF). Unlike classical factor
analysis, PCA, or ICA, NMF ensures positive factor loadings to obtain
interpretable long-only portfolios. As the NMF factors represent separate
sources of risk, they have a quasi-diagonal correlation matrix, promoting
diversified portfolio allocations. We evaluate our method in the context of
volatility targeting on two long-only global portfolios of cryptocurrencies and
traditional assets. Our method outperforms classical portfolio allocations
regarding diversification and presents a better risk profile than hierarchical
risk parity (HRP). We assess the robustness of our findings using Monte Carlo
simulation.
- Abstract(参考訳): 凸非負行列因子化(NMF)を用いたリスクファクタの予算化に基づくポートフォリオ割り当て手法を提案する。
古典的因子分析、PCA、ICAとは異なり、NMFは、解釈可能な長期限定のポートフォリオを得るために正の因子負荷を保証する。
NMF因子は、異なるリスク源を表すため、準対角相関行列を持ち、多様化されたポートフォリオ割り当てを促進する。
我々は、暗号通貨と伝統的資産の2つの長期的グローバルポートフォリオを対象とするボラティリティの文脈で、我々の手法を評価する。
本手法は,階層的リスクパリティ(HRP)よりも優れたリスクプロファイルを示す。
モンテカルロシミュレーションを用いて本研究のロバスト性を評価する。
関連論文リスト
- Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
本稿では,リスク感性分布強化学習(RS-DisRL)と静的リプシッツリスク対策(LRM),一般関数近似について紹介する。
モデルに基づく関数近似のためのモデルベース戦略であるtextttRS-DisRL-M と、一般値関数近似のためのモデルフリーアプローチである textttRS-DisRL-V の2つの革新的なメタアルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-02-28T08:43:18Z) - Which Matters Most in Making Fund Investment Decisions? A
Multi-granularity Graph Disentangled Learning Framework [47.308959396996606]
我々は,投資商品の知的マッチングを効果的に行うため,MGDLという新しいM言語グラニュラリティグラフ分散学習フレームワークを開発した。
特定のセマンティクスでより強い非絡み合い表現を実現するため、MGDLは2つの自己監督信号、すなわちファンドタイプのコントラストとファンドの人気を明示的に含んでいる。
論文 参考訳(メタデータ) (2023-11-23T09:08:43Z) - Model-Free Market Risk Hedging Using Crowding Networks [1.4786952412297811]
群集はポートフォリオ戦略を設計する上で最も重要なリスク要因の1つだと考えられている。
本研究は,株式の集団化スコアの算出に使用されるファンド保有のネットワーク分析を用いて,株式の集団化分析を行う。
本手法は,コストのかかるオプションベースの戦略や複雑な数値最適化を必要としない,テールリスクを含むポートフォリオリスクの代替手段を提供する。
論文 参考訳(メタデータ) (2023-06-13T19:50:03Z) - Uniform Pessimistic Risk and its Optimal Portfolio [0.6445605125467574]
本稿では,そのリスクに基づいて最適なポートフォリオを得るために,テキストテクスチュニフォーム悲観的リスクと計算アルゴリズムという,$alpha$-riskの積分を提案する。
3つのストックデータセット(S&P500、CSI500、KOSPI200)の実データ分析は、提案されたリスクとポートフォリオモデルの有用性を示している。
論文 参考訳(メタデータ) (2023-03-02T09:41:15Z) - Multivariate Systemic Risk Measures and Computation by Deep Learning
Algorithms [63.03966552670014]
本稿では,主観的最適度と関連するリスク割り当ての公平性に着目し,重要な理論的側面について論じる。
私たちが提供しているアルゴリズムは、予備項の学習、二重表現の最適化、およびそれに対応する公正なリスク割り当てを可能にします。
論文 参考訳(メタデータ) (2023-02-02T22:16:49Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
我々は、業界中立化と市場中立化モジュールを明確な財務見識をもって取り入れた、新しい深層多要素モデルを開発する。
実世界の株式市場データによるテストは、我々の深層多要素モデルの有効性を示している。
論文 参考訳(メタデータ) (2022-10-22T14:47:11Z) - Deep Risk Model: A Deep Learning Solution for Mining Latent Risk Factors
to Improve Covariance Matrix Estimation [8.617532047238461]
ニューラルネットワークによるリスクファクタを効果的に"設計"するためのディープラーニングソリューションを提案する。
提案手法は,R2$で測定した説明分散を1.9%以上高めることができ,また,グローバルな最小分散ポートフォリオのリスクを低減することができる。
論文 参考訳(メタデータ) (2021-07-12T05:30:50Z) - Permutation Invariant Policy Optimization for Mean-Field Multi-Agent
Reinforcement Learning: A Principled Approach [128.62787284435007]
本稿では,平均場近似ポリシ最適化(MF-PPO)アルゴリズムを提案する。
我々は,MF-PPOが収束のサブ線形速度で世界的最適政策を達成することを証明した。
特に、置換不変ニューラルアーキテクチャによって引き起こされる誘導バイアスは、MF-PPOが既存の競合より優れていることを示す。
論文 参考訳(メタデータ) (2021-05-18T04:35:41Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
本研究は,リスクに敏感な深層強化学習を,分散リスク基準による平均報酬条件下で研究する試みである。
本稿では,ポリシー,ラグランジュ乗算器,フェンシェル双対変数を反復的かつ効率的に更新するアクタ批判アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-28T05:02:26Z) - Learning Risk Preferences from Investment Portfolios Using Inverse
Optimization [25.19470942583387]
本稿では,既存ポートフォリオからのリスク嗜好を逆最適化を用いて測定する手法を提案する。
我々は、20年間の資産価格と10年間の相互ファンドポートフォリオ保有からなる実市場データについて、本手法を実証する。
論文 参考訳(メタデータ) (2020-10-04T21:29:29Z) - The Low-volatility Anomaly and the Adaptive Multi-Factor Model [0.0]
本稿は,低ボラティリティ異常の新しい説明を提供する。
我々は,GIBSアルゴリズムによって推定される適応多要素モデルを用いて,低ボラティリティポートフォリオと高ボラティリティポートフォリオに大きく関係する基底資産を求める。
論文 参考訳(メタデータ) (2020-03-16T20:08:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。