CCAT-NET: A Novel Transformer Based Semi-supervised Framework for
Covid-19 Lung Lesion Segmentation
- URL: http://arxiv.org/abs/2204.02839v1
- Date: Wed, 6 Apr 2022 14:05:48 GMT
- Title: CCAT-NET: A Novel Transformer Based Semi-supervised Framework for
Covid-19 Lung Lesion Segmentation
- Authors: Mingyang Liu, Li Xiao, Huiqin Jiang, Qing He
- Abstract summary: We propose a novel network structure that combines CNN and Transformer for the segmentation of COVID-19 lesions.
We also propose an efficient semi-supervised learning framework to address the shortage of labeled data.
- Score: 8.90602077660994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The spread of the novel coronavirus disease 2019 (COVID-19) has claimed
millions of lives. Automatic segmentation of lesions from CT images can assist
doctors with screening, treatment, and monitoring. However, accurate
segmentation of lesions from CT images can be very challenging due to data and
model limitations. Recently, Transformer-based networks have attracted a lot of
attention in the area of computer vision, as Transformer outperforms CNN at a
bunch of tasks. In this work, we propose a novel network structure that
combines CNN and Transformer for the segmentation of COVID-19 lesions. We
further propose an efficient semi-supervised learning framework to address the
shortage of labeled data. Extensive experiments showed that our proposed
network outperforms most existing networks and the semi-supervised learning
framework can outperform the base network by 3.0% and 8.2% in terms of Dice
coefficient and sensitivity.
Related papers
- CDSE-UNet: Enhancing COVID-19 CT Image Segmentation with Canny Edge
Detection and Dual-Path SENet Feature Fusion [10.831487161893305]
CDSE-UNet is a novel UNet-based segmentation model that integrates Canny operator edge detection and a dual-path SENet feature fusion mechanism.
We have developed a Multiscale Convolution approach, replacing the standard Convolution in UNet, to adapt to the varied lesion sizes and shapes.
Our evaluations on public datasets demonstrate CDSE-UNet's superior performance over other leading models.
arXiv Detail & Related papers (2024-03-03T13:36:07Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Dual Multi-scale Mean Teacher Network for Semi-supervised Infection
Segmentation in Chest CT Volume for COVID-19 [76.51091445670596]
Automated detecting lung infections from computed tomography (CT) data plays an important role for combating COVID-19.
Most current COVID-19 infection segmentation methods mainly relied on 2D CT images, which lack 3D sequential constraint.
Existing 3D CT segmentation methods focus on single-scale representations, which do not achieve the multiple level receptive field sizes on 3D volume.
arXiv Detail & Related papers (2022-11-10T13:11:21Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
Vision Transformers (ViTs) have not been applied to this task despite their high classification performance on generic images.
ViTs do not rely on convolutions but on patch-based self-attention and in contrast to CNNs, no prior knowledge of local connectivity is present.
Our results show that while the performance between ViTs and CNNs is on par with a small benefit for ViTs, DeiTs outperform the former if a reasonably large data set is available for training.
arXiv Detail & Related papers (2022-08-17T09:07:45Z) - CNN-based Local Vision Transformer for COVID-19 Diagnosis [5.042918676734868]
Vision Transformer (ViT) has shown great potential towards image classification due to its global receptive field.
We propose a new structure called Transformer for COVID-19 (COVT) to improve the performance of ViT-based architectures on small COVID-19 datasets.
arXiv Detail & Related papers (2022-07-05T13:16:57Z) - Stain Normalized Breast Histopathology Image Recognition using
Convolutional Neural Networks for Cancer Detection [9.826027427965354]
Recent advances have shown that the convolutional Neural Network (CNN) architectures can be used to design a Computer Aided Diagnostic (CAD) System for breast cancer detection.
We consider some contemporary CNN models for binary classification of breast histopathology images.
We have validated the trained CNN networks on a publicly available BreaKHis dataset, for 200x and 400x magnified histopathology images.
arXiv Detail & Related papers (2022-01-04T03:09:40Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
We present a novel cascaded robust learning framework for chest X-ray segmentation with imperfect annotation.
Our model consists of three independent network, which can effectively learn useful information from the peer networks.
Our methods could achieve a significant improvement on the accuracy in segmentation tasks compared to the previous methods.
arXiv Detail & Related papers (2021-04-05T15:50:16Z) - Quadruple Augmented Pyramid Network for Multi-class COVID-19
Segmentation via CT [1.6815638149823744]
COVID-19, a new strain of coronavirus disease, has been one of the most serious and infectious disease in the world.
In this paper, a multi-class COVID-19 CT segmentation is proposed aiming at helping radiologists estimate the extent of effected lung volume.
arXiv Detail & Related papers (2021-03-09T16:48:15Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.