Quadruple Augmented Pyramid Network for Multi-class COVID-19
Segmentation via CT
- URL: http://arxiv.org/abs/2103.05546v1
- Date: Tue, 9 Mar 2021 16:48:15 GMT
- Title: Quadruple Augmented Pyramid Network for Multi-class COVID-19
Segmentation via CT
- Authors: Ziyang Wang
- Abstract summary: COVID-19, a new strain of coronavirus disease, has been one of the most serious and infectious disease in the world.
In this paper, a multi-class COVID-19 CT segmentation is proposed aiming at helping radiologists estimate the extent of effected lung volume.
- Score: 1.6815638149823744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: COVID-19, a new strain of coronavirus disease, has been one of the most
serious and infectious disease in the world. Chest CT is essential in
prognostication, diagnosing this disease, and assessing the complication. In
this paper, a multi-class COVID-19 CT segmentation is proposed aiming at
helping radiologists estimate the extent of effected lung volume. We utilized
four augmented pyramid networks on an encoder-decoder segmentation framework.
Quadruple Augmented Pyramid Network (QAP-Net) not only enable CNN capture
features from variation size of CT images, but also act as spatial
interconnections and down-sampling to transfer sufficient feature information
for semantic segmentation. Experimental results achieve competitive performance
in segmentation with the Dice of 0.8163, which outperforms other
state-of-the-art methods, demonstrating the proposed framework can segments of
consolidation as well as glass, ground area via COVID-19 chest CT efficiently
and accurately.
Related papers
- Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - Classification and Region Analysis of COVID-19 Infection using Lung CT
Images and Deep Convolutional Neural Networks [0.8224695424591678]
This work proposes a two-stage deep Convolutional Neural Networks (CNNs) based framework for delineation of COVID-19 infected regions in Lung CT images.
In the first stage, COVID-19 specific CT image features are enhanced using a two-level discrete wavelet transformation.
These enhanced CT images are then classified using the proposed custom-made deep CoV-CTNet.
In the second stage, the CT images classified as infectious images are provided to the segmentation models for the identification and analysis of COVID-19 infectious regions.
arXiv Detail & Related papers (2020-09-16T02:28:46Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - COVID-19 Chest CT Image Segmentation -- A Deep Convolutional Neural
Network Solution [34.08284037107891]
We establish a new deep convolutional neural network tailored for segmenting the chest CT images with COVID-19 infections.
Inspired by the observation that the boundary of the infected lung can be enhanced by adjusting the global intensity, in the proposed deep CNN, we introduce a feature variation block.
The proposed FV block can enhance the capability of feature representation effectively and adaptively for diverse cases.
arXiv Detail & Related papers (2020-04-23T06:09:16Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z) - An automatic COVID-19 CT segmentation network using spatial and channel
attention mechanism [4.4259821861544]
coronavirus disease (COVID-19) pandemic has led to a devastating effect on the global public health.
It is of great importance to rapidly and accurately segment COVID-19 from CT to help diagnostic and patient monitoring.
We propose a U-Net based segmentation network using attention mechanism.
arXiv Detail & Related papers (2020-04-14T17:21:11Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.