DiffCloud: Real-to-Sim from Point Clouds with Differentiable Simulation
and Rendering of Deformable Objects
- URL: http://arxiv.org/abs/2204.03139v1
- Date: Thu, 7 Apr 2022 00:45:26 GMT
- Title: DiffCloud: Real-to-Sim from Point Clouds with Differentiable Simulation
and Rendering of Deformable Objects
- Authors: Priya Sundaresan, Rika Antonova, Jeannette Bohg
- Abstract summary: Research in manipulation of deformable objects is typically conducted on a limited range of scenarios.
Realistic simulators with support for various types of deformations and interactions have the potential to speed up experimentation.
For highly deformable objects it is challenging to align the output of a simulator with the behavior of real objects.
- Score: 18.266002992029716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research in manipulation of deformable objects is typically conducted on a
limited range of scenarios, because handling each scenario on hardware takes
significant effort. Realistic simulators with support for various types of
deformations and interactions have the potential to speed up experimentation
with novel tasks and algorithms. However, for highly deformable objects it is
challenging to align the output of a simulator with the behavior of real
objects. Manual tuning is not intuitive, hence automated methods are needed. We
view this alignment problem as a joint perception-inference challenge and
demonstrate how to use recent neural network architectures to successfully
perform simulation parameter inference from real point clouds. We analyze the
performance of various architectures, comparing their data and training
requirements. Furthermore, we propose to leverage differentiable point cloud
sampling and differentiable simulation to significantly reduce the time to
achieve the alignment. We employ an efficient way to propagate gradients from
point clouds to simulated meshes and further through to the physical simulation
parameters, such as mass and stiffness. Experiments with highly deformable
objects show that our method can achieve comparable or better alignment with
real object behavior, while reducing the time needed to achieve this by more
than an order of magnitude. Videos and supplementary material are available at
https://tinyurl.com/diffcloud.
Related papers
- PointSAGE: Mesh-independent superresolution approach to fluid flow predictions [0.0]
High-resolution CFD simulations offer valuable insights into fluid behavior and flow patterns.
As resolution increases, computational data requirements and time increase proportionately.
We propose PointSAGE, a mesh-independent network to learn the complex fluid flow and directly predict fine simulations.
arXiv Detail & Related papers (2024-04-06T12:49:09Z) - Benchmarking the Sim-to-Real Gap in Cloth Manipulation [10.530012817995656]
We present a benchmark dataset to evaluate the sim-to-real gap in cloth manipulation.
We use the dataset to evaluate the reality gap, computational time, and stability of four popular deformable object simulators.
arXiv Detail & Related papers (2023-10-14T09:36:01Z) - DeepSimHO: Stable Pose Estimation for Hand-Object Interaction via
Physics Simulation [81.11585774044848]
We present DeepSimHO, a novel deep-learning pipeline that combines forward physics simulation and backward gradient approximation with a neural network.
Our method noticeably improves the stability of the estimation and achieves superior efficiency over test-time optimization.
arXiv Detail & Related papers (2023-10-11T05:34:36Z) - Near-realtime Facial Animation by Deep 3D Simulation Super-Resolution [7.14576106770047]
We present a neural network-based simulation framework that can efficiently and realistically enhance a facial performance produced by a low-cost, realtime physics-based simulation.
We use face animation as an exemplar of such a simulation domain, where creating this semantic congruence is achieved by simply dialing in the same muscle actuation controls and skeletal pose in the two simulators.
Our proposed neural network super-resolution framework generalizes from this training set to unseen expressions, compensates for modeling discrepancies between the two simulations due to limited resolution or cost-cutting approximations in the real-time variant, and does not require any semantic descriptors or parameters to
arXiv Detail & Related papers (2023-05-05T00:09:24Z) - Improving Gradient Computation for Differentiable Physics Simulation
with Contacts [10.450509067356148]
We study differentiable rigid-body simulation with contacts.
We propose to improve gradient computation by continuous collision detection and leverage the time-of-impact (TOI)
We show that with TOI-Ve, we are able to learn an optimal control sequence that matches the analytical solution.
arXiv Detail & Related papers (2023-04-28T21:10:16Z) - Quantifying the LiDAR Sim-to-Real Domain Shift: A Detailed Investigation
Using Object Detectors and Analyzing Point Clouds at Target-Level [1.1999555634662635]
LiDAR object detection algorithms based on neural networks for autonomous driving require large amounts of data for training, validation, and testing.
We show that using simulated data for the training of neural networks leads to a domain shift of training and testing data due to differences in scenes, scenarios, and distributions.
arXiv Detail & Related papers (2023-03-03T12:52:01Z) - DiffSkill: Skill Abstraction from Differentiable Physics for Deformable
Object Manipulations with Tools [96.38972082580294]
DiffSkill is a novel framework that uses a differentiable physics simulator for skill abstraction to solve deformable object manipulation tasks.
In particular, we first obtain short-horizon skills using individual tools from a gradient-based simulator.
We then learn a neural skill abstractor from the demonstration trajectories which takes RGBD images as input.
arXiv Detail & Related papers (2022-03-31T17:59:38Z) - DiSECt: A Differentiable Simulator for Parameter Inference and Control
in Robotic Cutting [71.50844437057555]
We present DiSECt: the first differentiable simulator for cutting soft materials.
The simulator augments the finite element method with a continuous contact model based on signed distance fields.
We show that the simulator can be calibrated to match resultant forces and fields from a state-of-the-art commercial solver.
arXiv Detail & Related papers (2022-03-19T07:27:19Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z) - PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable
Physics [89.81550748680245]
We introduce a new differentiable physics benchmark called PasticineLab.
In each task, the agent uses manipulators to deform the plasticine into the desired configuration.
We evaluate several existing reinforcement learning (RL) methods and gradient-based methods on this benchmark.
arXiv Detail & Related papers (2021-04-07T17:59:23Z) - Scalable Differentiable Physics for Learning and Control [99.4302215142673]
Differentiable physics is a powerful approach to learning and control problems that involve physical objects and environments.
We develop a scalable framework for differentiable physics that can support a large number of objects and their interactions.
arXiv Detail & Related papers (2020-07-04T19:07:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.