A Survey of Multi-task Learning in Natural Language Processing:
Regarding Task Relatedness and Training Methods
- URL: http://arxiv.org/abs/2204.03508v1
- Date: Thu, 7 Apr 2022 15:22:19 GMT
- Title: A Survey of Multi-task Learning in Natural Language Processing:
Regarding Task Relatedness and Training Methods
- Authors: Zhihan Zhang, Wenhao Yu, Mengxia Yu, Zhichun Guo, Meng Jiang
- Abstract summary: Multi-task learning (MTL) has become increasingly popular in natural language processing (NLP)
It improves the performance of related tasks by exploiting their commonalities and differences.
It is still not understood very well how multi-task learning can be implemented based on the relatedness of training tasks.
- Score: 17.094426577723507
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-task learning (MTL) has become increasingly popular in natural language
processing (NLP) because it improves the performance of related tasks by
exploiting their commonalities and differences. Nevertheless, it is still not
understood very well how multi-task learning can be implemented based on the
relatedness of training tasks. In this survey, we review recent advances of
multi-task learning methods in NLP, with the aim of summarizing them into two
general multi-task training methods based on their task relatedness: (i) joint
training and (ii) multi-step training. We present examples in various NLP
downstream applications, summarize the task relationships and discuss future
directions of this promising topic.
Related papers
- Multi-task Active Learning for Pre-trained Transformer-based Models [22.228551277598804]
Multi-task learning, in which several tasks are jointly learned by a single model, allows NLP models to share information from multiple annotations.
This technique requires annotating the same text with multiple annotation schemes which may be costly and laborious.
Active learning (AL) has been demonstrated to optimize annotation processes by iteratively selecting unlabeled examples.
arXiv Detail & Related papers (2022-08-10T14:54:13Z) - Saliency-Regularized Deep Multi-Task Learning [7.3810864598379755]
Multitask learning enforces multiple learning tasks to share knowledge to improve their generalization abilities.
Modern deep multitask learning can jointly learn latent features and task sharing, but they are obscure in task relation.
This paper proposes a new multitask learning framework that jointly learns latent features and explicit task relations.
arXiv Detail & Related papers (2022-07-03T20:26:44Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
We study whether sparsely activated Mixture-of-Experts (MoE) improve multi-task learning.
We devise task-aware gating functions to route examples from different tasks to specialized experts.
This results in a sparsely activated multi-task model with a large number of parameters, but with the same computational cost as that of a dense model.
arXiv Detail & Related papers (2022-04-16T00:56:12Z) - Multi-Task Learning for Visual Scene Understanding [7.191593674138455]
This thesis is concerned with multi-task learning in the context of computer vision.
We propose several methods that tackle important aspects of multi-task learning.
The results show several advances in the state-of-the-art of multi-task learning.
arXiv Detail & Related papers (2022-03-28T16:57:58Z) - Multi-Task Neural Processes [105.22406384964144]
We develop multi-task neural processes, a new variant of neural processes for multi-task learning.
In particular, we propose to explore transferable knowledge from related tasks in the function space to provide inductive bias for improving each individual task.
Results demonstrate the effectiveness of multi-task neural processes in transferring useful knowledge among tasks for multi-task learning.
arXiv Detail & Related papers (2021-11-10T17:27:46Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
Multi-task learning aims to explore task relatedness to improve individual tasks.
We propose variational multi-task learning (VMTL), a general probabilistic inference framework for learning multiple related tasks.
arXiv Detail & Related papers (2021-11-09T18:49:45Z) - On the relationship between disentanglement and multi-task learning [62.997667081978825]
We take a closer look at the relationship between disentanglement and multi-task learning based on hard parameter sharing.
We show that disentanglement appears naturally during the process of multi-task neural network training.
arXiv Detail & Related papers (2021-10-07T14:35:34Z) - Measuring and Harnessing Transference in Multi-Task Learning [58.48659733262734]
Multi-task learning can leverage information learned by one task to benefit the training of other tasks.
We analyze the dynamics of information transfer, or transference, across tasks throughout training.
arXiv Detail & Related papers (2020-10-29T08:25:43Z) - Multi-Task Learning with Deep Neural Networks: A Survey [0.0]
Multi-task learning (MTL) is a subfield of machine learning in which multiple tasks are simultaneously learned by a shared model.
We give an overview of multi-task learning methods for deep neural networks, with the aim of summarizing both the well-established and most recent directions within the field.
arXiv Detail & Related papers (2020-09-10T19:31:04Z) - Learning to Multi-Task Learn for Better Neural Machine Translation [53.06405021125476]
Multi-task learning is an elegant approach to inject linguistic-related biases into neural machine translation models.
We propose a novel framework for learning the training schedule, ie learning to multi-task learn, for the biased-MTL setting of interest.
Experiments show the resulting automatically learned training schedulers are competitive with the best, and lead to up to +1.1 BLEU score improvements.
arXiv Detail & Related papers (2020-01-10T03:12:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.