Multi-Task Learning with Deep Neural Networks: A Survey
- URL: http://arxiv.org/abs/2009.09796v1
- Date: Thu, 10 Sep 2020 19:31:04 GMT
- Title: Multi-Task Learning with Deep Neural Networks: A Survey
- Authors: Michael Crawshaw
- Abstract summary: Multi-task learning (MTL) is a subfield of machine learning in which multiple tasks are simultaneously learned by a shared model.
We give an overview of multi-task learning methods for deep neural networks, with the aim of summarizing both the well-established and most recent directions within the field.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-task learning (MTL) is a subfield of machine learning in which multiple
tasks are simultaneously learned by a shared model. Such approaches offer
advantages like improved data efficiency, reduced overfitting through shared
representations, and fast learning by leveraging auxiliary information.
However, the simultaneous learning of multiple tasks presents new design and
optimization challenges, and choosing which tasks should be learned jointly is
in itself a non-trivial problem. In this survey, we give an overview of
multi-task learning methods for deep neural networks, with the aim of
summarizing both the well-established and most recent directions within the
field. Our discussion is structured according to a partition of the existing
deep MTL techniques into three groups: architectures, optimization methods, and
task relationship learning. We also provide a summary of common multi-task
benchmarks.
Related papers
- Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Multi-Task Cooperative Learning via Searching for Flat Minima [8.835287696319641]
We propose to formulate MTL as a multi/bi-level optimization problem, and therefore force features to learn from each task in a cooperative approach.
Specifically, we update the sub-model for each task alternatively taking advantage of the learned sub-models of the other tasks.
To alleviate the negative transfer problem during the optimization, we search for flat minima for the current objective function.
arXiv Detail & Related papers (2023-09-21T14:00:11Z) - DenseMTL: Cross-task Attention Mechanism for Dense Multi-task Learning [18.745373058797714]
We propose a novel multi-task learning architecture that leverages pairwise cross-task exchange through correlation-guided attention and self-attention.
We conduct extensive experiments across three multi-task setups, showing the advantages of our approach compared to competitive baselines in both synthetic and real-world benchmarks.
arXiv Detail & Related papers (2022-06-17T17:59:45Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
We study whether sparsely activated Mixture-of-Experts (MoE) improve multi-task learning.
We devise task-aware gating functions to route examples from different tasks to specialized experts.
This results in a sparsely activated multi-task model with a large number of parameters, but with the same computational cost as that of a dense model.
arXiv Detail & Related papers (2022-04-16T00:56:12Z) - Multi-Task Learning for Visual Scene Understanding [7.191593674138455]
This thesis is concerned with multi-task learning in the context of computer vision.
We propose several methods that tackle important aspects of multi-task learning.
The results show several advances in the state-of-the-art of multi-task learning.
arXiv Detail & Related papers (2022-03-28T16:57:58Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
Multi-Task Learning (MTL) aims to enhance the model generalization by sharing representations between related tasks for better performance.
We propose the Semi-supervised Multi-Task Learning (MTL) method to leverage the available supervisory signals from different datasets.
We present a domain-aware discriminator structure with various alignment formulations to mitigate the domain discrepancy issue among datasets.
arXiv Detail & Related papers (2021-10-14T07:43:39Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
We aim to solve multi-task learning through the lens of sequence-conditioning and weighted sampling.
We propose a new suite of benchmark aimed at compositional tasks, MultiRavens, which allows defining custom task combinations.
Second, we propose a vision-based end-to-end system architecture, Sequence-Conditioned Transporter Networks, which augments Goal-Conditioned Transporter Networks with sequence-conditioning and weighted sampling.
arXiv Detail & Related papers (2021-09-15T21:19:11Z) - Boosting Share Routing for Multi-task Learning [0.12891210250935145]
Multi-task learning (MTL) aims to make full use of the knowledge contained in multi-task supervision signals to improve the overall performance.
How to make the knowledge of multiple tasks shared appropriately is an open problem for MTL.
We propose a general framework called Multi-Task Neural Architecture Search (MTNAS) to efficiently find a suitable sharing route for a given MTL problem.
arXiv Detail & Related papers (2020-09-01T12:37:19Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
Two common challenges in developing multi-task models are often overlooked in literature.
First, enabling the model to be inherently incremental, continuously incorporating information from new tasks without forgetting the previously learned ones (incremental learning)
Second, eliminating adverse interactions amongst tasks, which has been shown to significantly degrade the single-task performance in a multi-task setup (task interference)
arXiv Detail & Related papers (2020-07-24T14:44:46Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
Multi-task learning (MTL) techniques have shown promising results w.r.t. performance, computations and/or memory footprint.
We provide a well-rounded view on state-of-the-art deep learning approaches for MTL in computer vision.
arXiv Detail & Related papers (2020-04-28T09:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.