Efficient Multiscale Object-based Superpixel Framework
- URL: http://arxiv.org/abs/2204.03533v1
- Date: Thu, 7 Apr 2022 15:59:38 GMT
- Title: Efficient Multiscale Object-based Superpixel Framework
- Authors: Felipe Bel\'em and Benjamin Perret and Jean Cousty and Silvio J. F.
Guimar\~aes and Alexandre Falc\~ao
- Abstract summary: We propose a novel superpixel framework, named Superpixels through Iterative CLEarcutting (SICLE)
SICLE exploits object information being able to generate a multiscale segmentation on-the-fly.
It generalizes recent superpixel methods, surpassing them and other state-of-the-art approaches in efficiency and effectiveness according to multiple delineation metrics.
- Score: 62.48475585798724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Superpixel segmentation can be used as an intermediary step in many
applications, often to improve object delineation and reduce computer workload.
However, classical methods do not incorporate information about the desired
object. Deep-learning-based approaches consider object information, but their
delineation performance depends on data annotation. Additionally, the
computational time of object-based methods is usually much higher than desired.
In this work, we propose a novel superpixel framework, named Superpixels
through Iterative CLEarcutting (SICLE), which exploits object information being
able to generate a multiscale segmentation on-the-fly. SICLE starts off from
seed oversampling and repeats optimal connectivity-based superpixel delineation
and object-based seed removal until a desired number of superpixels is reached.
It generalizes recent superpixel methods, surpassing them and other
state-of-the-art approaches in efficiency and effectiveness according to
multiple delineation metrics.
Related papers
- PixelLM: Pixel Reasoning with Large Multimodal Model [110.500792765109]
PixelLM is an effective and efficient LMM for pixel-level reasoning and understanding.
It produces masks from the hidden embeddings of the codebook tokens, which encode detailed target-relevant information.
PixelLM excels across various pixel-level image reasoning and understanding tasks, outperforming well-established methods in multiple benchmarks.
arXiv Detail & Related papers (2023-12-04T03:05:59Z) - Superpixel Transformers for Efficient Semantic Segmentation [32.537400525407186]
We propose a solution by leveraging the idea of superpixels, an over-segmentation of the image, and applying them with a modern transformer framework.
Our method achieves state-of-the-art performance in semantic segmentation due to the rich superpixel features generated by the global self-attention mechanism.
arXiv Detail & Related papers (2023-09-28T23:09:30Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
The present work develops comparison experiments between deep learning and multiset neurons approaches.
The deep learning approach confirmed its potential for performing image segmentation.
The alternative multiset methodology allowed for enhanced accuracy while requiring little computational resources.
arXiv Detail & Related papers (2023-07-19T16:42:52Z) - AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation [86.44683367028914]
Aerial imagery segmentation has some unique challenges, the most critical one among which lies in foreground-background imbalance.
We propose Adaptive Focus Framework (AF$), which adopts a hierarchical segmentation procedure and focuses on adaptively utilizing multi-scale representations.
AF$ has significantly improved the accuracy on three widely used aerial benchmarks, as fast as the mainstream method.
arXiv Detail & Related papers (2022-02-18T10:14:45Z) - Saliency Enhancement using Superpixel Similarity [77.34726150561087]
Saliency Object Detection (SOD) has several applications in image analysis.
Deep-learning-based SOD methods are among the most effective, but they may miss foreground parts with similar colors.
We introduce a post-processing method, named textitSaliency Enhancement over Superpixel Similarity (SESS)
We demonstrate that SESS can consistently and considerably improve the results of three deep-learning-based SOD methods on five image datasets.
arXiv Detail & Related papers (2021-12-01T17:22:54Z) - HERS Superpixels: Deep Affinity Learning for Hierarchical Entropy Rate
Segmentation [0.0]
We propose a two-stage graph-based framework for superpixel segmentation.
In the first stage, we introduce an efficient Deep Affinity Learning network that learns pairwise pixel affinities.
In the second stage, we propose a highly efficient superpixel method called Hierarchical Entropy Rate (HERS)
arXiv Detail & Related papers (2021-06-07T16:20:04Z) - Superpixel-based Refinement for Object Proposal Generation [3.1981440103815717]
We introduce a new superpixel-based refinement approach on top of the state-of-the-art object proposal system AttentionMask.
Our experiments show an improvement of up to 26.4% in terms of average recall compared to original AttentionMask.
arXiv Detail & Related papers (2021-01-12T16:06:48Z) - Visual Object Tracking by Segmentation with Graph Convolutional Network [7.729569666460712]
We propose to utilize graph convolutional network (GCN) model for superpixel based object tracking.
The proposed model provides a general end-to-end framework which integrates i) label linear prediction, and ii) structure-aware feature information of each superpixel together.
arXiv Detail & Related papers (2020-09-05T12:43:21Z) - ITSELF: Iterative Saliency Estimation fLexible Framework [68.8204255655161]
Saliency object detection estimates the objects that most stand out in an image.
We propose a superpixel-based ITerative Saliency Estimation fLexible Framework (ITSELF) that allows any user-defined assumptions to be added to the model.
We compare ITSELF to two state-of-the-art saliency estimators on five metrics and six datasets.
arXiv Detail & Related papers (2020-06-30T16:51:31Z) - Superpixel Segmentation via Convolutional Neural Networks with
Regularized Information Maximization [11.696069523681178]
We propose an unsupervised superpixel segmentation method by optimizing a randomly-d convolutional neural network (CNN) in inference time.
Our method generates superpixels via CNN from a single image without any labels by minimizing a proposed objective function for superpixel segmentation in inference time.
arXiv Detail & Related papers (2020-02-17T04:32:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.