Superpixel Segmentation via Convolutional Neural Networks with
Regularized Information Maximization
- URL: http://arxiv.org/abs/2002.06765v3
- Date: Fri, 26 Jun 2020 14:02:13 GMT
- Title: Superpixel Segmentation via Convolutional Neural Networks with
Regularized Information Maximization
- Authors: Teppei Suzuki
- Abstract summary: We propose an unsupervised superpixel segmentation method by optimizing a randomly-d convolutional neural network (CNN) in inference time.
Our method generates superpixels via CNN from a single image without any labels by minimizing a proposed objective function for superpixel segmentation in inference time.
- Score: 11.696069523681178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an unsupervised superpixel segmentation method by optimizing a
randomly-initialized convolutional neural network (CNN) in inference time. Our
method generates superpixels via CNN from a single image without any labels by
minimizing a proposed objective function for superpixel segmentation in
inference time. There are three advantages to our method compared with many of
existing methods: (i) leverages an image prior of CNN for superpixel
segmentation, (ii) adaptively changes the number of superpixels according to
the given images, and (iii) controls the property of superpixels by adding an
auxiliary cost to the objective function. We verify the advantages of our
method quantitatively and qualitatively on BSDS500 and SBD datasets.
Related papers
- Superpixel Transformers for Efficient Semantic Segmentation [32.537400525407186]
We propose a solution by leveraging the idea of superpixels, an over-segmentation of the image, and applying them with a modern transformer framework.
Our method achieves state-of-the-art performance in semantic segmentation due to the rich superpixel features generated by the global self-attention mechanism.
arXiv Detail & Related papers (2023-09-28T23:09:30Z) - Rethinking Unsupervised Neural Superpixel Segmentation [6.123324869194195]
unsupervised learning for superpixel segmentation via CNNs has been studied.
We propose three key elements to improve the efficacy of such networks.
By experimenting with the BSDS500 dataset, we find evidence to the significance of our proposal.
arXiv Detail & Related papers (2022-06-21T09:30:26Z) - Efficient Multiscale Object-based Superpixel Framework [62.48475585798724]
We propose a novel superpixel framework, named Superpixels through Iterative CLEarcutting (SICLE)
SICLE exploits object information being able to generate a multiscale segmentation on-the-fly.
It generalizes recent superpixel methods, surpassing them and other state-of-the-art approaches in efficiency and effectiveness according to multiple delineation metrics.
arXiv Detail & Related papers (2022-04-07T15:59:38Z) - Saliency Enhancement using Superpixel Similarity [77.34726150561087]
Saliency Object Detection (SOD) has several applications in image analysis.
Deep-learning-based SOD methods are among the most effective, but they may miss foreground parts with similar colors.
We introduce a post-processing method, named textitSaliency Enhancement over Superpixel Similarity (SESS)
We demonstrate that SESS can consistently and considerably improve the results of three deep-learning-based SOD methods on five image datasets.
arXiv Detail & Related papers (2021-12-01T17:22:54Z) - Generating Superpixels for High-resolution Images with Decoupled Patch
Calibration [82.21559299694555]
Patch Networks (PCNet) is designed to efficiently and accurately implement high-resolution superpixel segmentation.
DPC takes a local patch from the high-resolution images and dynamically generates a binary mask to impose the network to focus on region boundaries.
In particular, DPC takes a local patch from the high-resolution images and dynamically generates a binary mask to impose the network to focus on region boundaries.
arXiv Detail & Related papers (2021-08-19T10:33:05Z) - HERS Superpixels: Deep Affinity Learning for Hierarchical Entropy Rate
Segmentation [0.0]
We propose a two-stage graph-based framework for superpixel segmentation.
In the first stage, we introduce an efficient Deep Affinity Learning network that learns pairwise pixel affinities.
In the second stage, we propose a highly efficient superpixel method called Hierarchical Entropy Rate (HERS)
arXiv Detail & Related papers (2021-06-07T16:20:04Z) - Implicit Integration of Superpixel Segmentation into Fully Convolutional
Networks [11.696069523681178]
We propose a way to implicitly integrate a superpixel scheme into CNNs.
Our proposed method hierarchically groups pixels at downsampling layers and generates superpixels.
We evaluate our method on several tasks such as semantic segmentation, superpixel segmentation, and monocular depth estimation.
arXiv Detail & Related papers (2021-03-05T02:20:26Z) - AINet: Association Implantation for Superpixel Segmentation [82.21559299694555]
We propose a novel textbfAssociation textbfImplantation (AI) module to enable the network to explicitly capture the relations between the pixel and its surrounding grids.
Our method could not only achieve state-of-the-art performance but maintain satisfactory inference efficiency.
arXiv Detail & Related papers (2021-01-26T10:40:13Z) - Superpixel Segmentation Based on Spatially Constrained Subspace
Clustering [57.76302397774641]
We consider each representative region with independent semantic information as a subspace, and formulate superpixel segmentation as a subspace clustering problem.
We show that a simple integration of superpixel segmentation with the conventional subspace clustering does not effectively work due to the spatial correlation of the pixels.
We propose a novel convex locality-constrained subspace clustering model that is able to constrain the spatial adjacent pixels with similar attributes to be clustered into a superpixel.
arXiv Detail & Related papers (2020-12-11T06:18:36Z) - Spatially-Adaptive Pixelwise Networks for Fast Image Translation [57.359250882770525]
We introduce a new generator architecture, aimed at fast and efficient high-resolution image-to-image translation.
We use pixel-wise networks; that is, each pixel is processed independently of others.
Our model is up to 18x faster than state-of-the-art baselines.
arXiv Detail & Related papers (2020-12-05T10:02:03Z) - Superpixel Segmentation with Fully Convolutional Networks [32.878045921919714]
We present a novel method that employs a simple fully convolutional network to predict superpixels on a regular image grid.
Experimental results on benchmark datasets show that our method achieves state-of-the-art superpixel segmentation performance.
We modify a popular network architecture for stereo matching to simultaneously predict superpixels and disparities.
arXiv Detail & Related papers (2020-03-29T02:42:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.