論文の概要: Drivers' attention detection: a systematic literature review
- arxiv url: http://arxiv.org/abs/2204.03741v1
- Date: Wed, 6 Apr 2022 11:36:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-11 13:13:08.315008
- Title: Drivers' attention detection: a systematic literature review
- Title(参考訳): ドライバーの注意検出 : 系統的な文献レビュー
- Authors: Luiz G. V\'eras, Anna K. F. Gomes, Guilherme A. R. Dominguez and
Alexandre T. Oliveira
- Abstract要約: 多くの要因が運転中の注意散らしに寄与しうるが、それは物体や事象が生理的状態、つまり眠気や疲労に結びつくためであり、運転者が注意をそらすことができないからである。
技術進歩により、現実の状況における注意を検知する多くのソリューションの開発と応用が可能となった。
本研究は,車輪の運転者の注意を検知するための方法と基準について,システマティック文献レビュー(Systematic Literature Review)を提示する。
- 参考スコア(独自算出の注目度): 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Countless traffic accidents often occur because of the inattention of the
drivers. Many factors can contribute to distractions while driving, since
objects or events to physiological conditions, as drowsiness and fatigue, do
not allow the driver to stay attentive. The technological progress allowed the
development and application of many solutions to detect the attention in real
situations, promoting the interest of the scientific community in these last
years. Commonly, these solutions identify the lack of attention and alert the
driver, in order to help her/him to recover the attention, avoiding serious
accidents and preserving lives. Our work presents a Systematic Literature
Review (SLR) of the methods and criteria used to detect attention of drivers at
the wheel, focusing on those methods based on images. As results, 50 studies
were selected from the literature on drivers' attention detection, in which 22
contain solutions in the desired context. The results of SLR can be used as a
resource in the preparation of new research projects in drivers' attention
detection.
- Abstract(参考訳): 無数の交通事故がしばしばドライバーの不注意のために起こる。
多くの要因が運転中の注意散らしに寄与しうるが、それは物体や事象が生理的状態、つまり眠気や疲労に結びつくためであり、運転者が注意をそらすことができないからである。
技術進歩により、現実の状況における注意を検知する多くのソリューションの開発と応用が可能となり、過去数年間の科学界の関心を喚起した。
一般的に、これらのソリューションは注意の欠如を認識し、注意を回復し、深刻な事故を避け、命を守るためにドライバーに警告する。
本研究は,車いすの運転者の注意を検知するために使用される手法と基準を,画像に基づくシステム文献レビュー(SLR)で提示する。
その結果、ドライバーの注意検出に関する文献から50の論文が選択され、22の解が所望の文脈に含まれた。
SLRの結果は、ドライバーの注意検出のための新しい研究プロジェクトの準備のリソースとして利用することができる。
関連論文リスト
- Using Visual and Vehicular Sensors for Driver Behavior Analysis: A
Survey [0.0]
危険ドライバーは米国での死亡事故の70%を占めている。
本稿では,視覚・車体データを用いた運転者の行動分析手法について検討する。
論文 参考訳(メタデータ) (2023-08-25T14:33:59Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [50.936478241688114]
非客観的運転経験のモデル化は困難であり,既存手法では運転経験蓄積手順を模擬する機構が欠如している。
本稿では,運転経験蓄積手順をモデル化するFeedBack Loop Network (FBLNet)を提案する。
提案モデルでは,既存の手法に対して強い優位性を示し,2つのドライバー注意ベンチマークデータセットの性能向上を実現している。
論文 参考訳(メタデータ) (2022-12-05T08:25:09Z) - Modelling and Detection of Driver's Fatigue using Ontology [60.090278944561184]
道路事故は世界8大死因である。
様々な要因がドライバーの疲労の原因となっている。
ドライバの疲労検出に関するオントロジー知識とルールをインテリジェントシステムに統合する必要がある。
論文 参考訳(メタデータ) (2022-08-31T08:42:28Z) - An active approach towards monitoring and enhancing drivers'
capabilities -- the ADAM cogtec solution [1.0312968200748118]
特定の瞬間における運転者の認知能力は、運転者の安全性を評価する上で最も明白な変数である。
視覚刺激に対するドライバーの眼反応が記録された閉ループ法を開発した。
機械学習アルゴリズムは、警戒状態の眼反応に基づいて訓練され、疲労や物質乱用による能力低下を検出することができた。
論文 参考訳(メタデータ) (2022-04-05T07:46:07Z) - Generalized Out-of-Distribution Detection: A Survey [83.0449593806175]
アウト・オブ・ディストリビューション(OOD)検出は、機械学習システムの信頼性と安全性を確保するために重要である。
その他の問題として、異常検出(AD)、新規検出(ND)、オープンセット認識(OSR)、異常検出(OD)などがある。
まず、上記の5つの問題を含む一般化OOD検出という統合されたフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-21T17:59:41Z) - Behavioral Research and Practical Models of Drivers' Attention [21.70169149901781]
このレポートは、ドライバーの内部および外部の要因によるドライバーの視覚的注意の変化に関する文献をカバーしています。
ドライバーの注意に関する学際的な理論的および行動的研究と実用的な解決策を結びつけます。
このレポートは、175以上の行動研究、100近い実用的な論文、20のデータセット、2010年以来の70以上の調査に基づいています。
論文 参考訳(メタデータ) (2021-04-12T17:42:04Z) - Driver Drowsiness Classification Based on Eye Blink and Head Movement
Features Using the k-NN Algorithm [8.356765961526955]
この研究は、ドライバー監視カメラの信号を用いて、車両内の運転者の眠気検知を拡張することを目的としている。
この目的のために、運転シミュレータ実験において、運転者の点眼行動と頭部運動に関連する35の特徴を抽出する。
最高の特徴セットの分析は、運転者の瞬き行動と頭部の動きに対する眠気の影響についての貴重な洞察を与える。
論文 参考訳(メタデータ) (2020-09-28T12:37:38Z) - A Survey and Tutorial of EEG-Based Brain Monitoring for Driver State
Analysis [164.93739293097605]
EEGは運転状態のモニタリングとヒューマンエラー検出において最も効果的な方法の1つであることが証明されている。
本稿では,過去30年間の脳波に基づく運転状態検出システムとその解析アルゴリズムについて論じる。
現在のEEGベースの運転状態監視アルゴリズムは、安全アプリケーションに有望である、と結論付けている。
論文 参考訳(メタデータ) (2020-08-25T18:21:35Z) - When Do Drivers Concentrate? Attention-based Driver Behavior Modeling
With Deep Reinforcement Learning [8.9801312307912]
本研究では,運転者の行動を観察に基づいて近似し,運転者の注意度を計測するアクタ批判手法を提案する。
反応時間を考慮してアクターネットワークにアテンション機構を構築し,連続した観測の時間的依存性を捉える。
実世界の車両軌道データを用いて実験を行い,提案手法の精度が7つのベースラインアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2020-02-26T09:56:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。