論文の概要: A Learnable Variational Model for Joint Multimodal MRI Reconstruction
and Synthesis
- arxiv url: http://arxiv.org/abs/2204.03804v1
- Date: Fri, 8 Apr 2022 01:35:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-11 19:49:09.835360
- Title: A Learnable Variational Model for Joint Multimodal MRI Reconstruction
and Synthesis
- Title(参考訳): 複合型マルチモーダルMRI再構成と合成のための学習可能な変分モデル
- Authors: Wanyu Bian, Qingchao Zhang, Xiaojing Ye, Yunmei Chen
- Abstract要約: マルチモーダルMRIの関節再構成と合成のための新しいディープラーニングモデルを提案する。
本モデルの出力は、ソースのモダリティの再構成画像と、ターゲットのモダリティで合成された高品質な画像を含む。
- 参考スコア(独自算出の注目度): 4.056490719080639
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating multi-contrasts/modal MRI of the same anatomy enriches diagnostic
information but is limited in practice due to excessive data acquisition time.
In this paper, we propose a novel deep-learning model for joint reconstruction
and synthesis of multi-modal MRI using incomplete k-space data of several
source modalities as inputs. The output of our model includes reconstructed
images of the source modalities and high-quality image synthesized in the
target modality. Our proposed model is formulated as a variational problem that
leverages several learnable modality-specific feature extractors and a
multimodal synthesis module. We propose a learnable optimization algorithm to
solve this model, which induces a multi-phase network whose parameters can be
trained using multi-modal MRI data. Moreover, a bilevel-optimization framework
is employed for robust parameter training. We demonstrate the effectiveness of
our approach using extensive numerical experiments.
- Abstract(参考訳): 同じ解剖学のマルチコントラスト/モーダルmriの生成は、診断情報を豊かにするが、過剰なデータ取得時間のために実際に制限される。
本稿では,複数音源モードの不完全k空間データを入力として用いた,複数モードMRIの結合再構成と合成のための新しいディープラーニングモデルを提案する。
本モデルの出力には,音源モダリティの再構成画像と,対象モダリティで合成された高品質画像が含まれる。
提案モデルは,複数の学習可能な様相特異的特徴抽出器とマルチモーダル合成モジュールを用いた変分問題として定式化されている。
本稿では,マルチモーダルMRIデータを用いてパラメータを訓練可能なマルチフェーズネットワークを誘導する学習可能な最適化アルゴリズムを提案する。
さらに、ロバストパラメータトレーニングには、バイレベル最適化フレームワークが使用される。
本手法の有効性を広範囲な数値実験により実証する。
関連論文リスト
- NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - Disentangled Multimodal Brain MR Image Translation via Transformer-based
Modality Infuser [12.402947207350394]
マルチモーダル脳MR画像の合成を目的としたトランスフォーマーを用いたモダリティインジェクタを提案する。
本手法では,エンコーダからモダリティに依存しない特徴を抽出し,その特徴をモダリティ固有の特徴に変換する。
われわれはBraTS 2018データセットで4つのMRモードを変換する実験を行った。
論文 参考訳(メタデータ) (2024-02-01T06:34:35Z) - Deep Unfolding Convolutional Dictionary Model for Multi-Contrast MRI
Super-resolution and Reconstruction [23.779641808300596]
最適化アルゴリズムの指導の下で,マルチコントラスト畳み込み辞書(MC-CDic)モデルを提案する。
近似勾配アルゴリズムを用いてモデルを最適化し、反復的なステップを深部CDicモデルに展開する。
実験により,既存のSOTA法に対して提案したMC-CDicモデルの方が優れた性能を示した。
論文 参考訳(メタデータ) (2023-09-03T13:18:59Z) - Unified Multi-Modal Image Synthesis for Missing Modality Imputation [23.681228202899984]
そこで本研究では,モダリティの欠如を抑えるために,新しいマルチモーダル画像合成法を提案する。
提案手法は, 各種合成タスクの処理に有効であり, 従来の手法と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-11T16:59:15Z) - CoLa-Diff: Conditional Latent Diffusion Model for Multi-Modal MRI
Synthesis [11.803971719704721]
ほとんどの拡散ベースのMRI合成モデルは単一のモードを使用している。
拡散型多モードMRI合成モデル、すなわち条件付き潜在拡散モデル(CoLa-Diff)を提案する。
実験により、CoLa-Diffは他の最先端MRI合成法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-03-24T15:46:10Z) - A Novel Unified Conditional Score-based Generative Framework for
Multi-modal Medical Image Completion [54.512440195060584]
我々は、スコアベース生成モデル(SGM)を活用するために、統一多モードスコアベース生成モデル(UMM-CSGM)を提案する。
UMM-CSGMは、新しいマルチインマルチアウトコンディションスコアネットワーク(mm-CSN)を用いて、クロスモーダル条件分布の包括的集合を学習する。
BraTS19データセットの実験により、UMM-CSGMは腫瘍誘発病変における不均一な増強と不規則な領域をより確実に合成できることが示された。
論文 参考訳(メタデータ) (2022-07-07T16:57:21Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z) - Hi-Net: Hybrid-fusion Network for Multi-modal MR Image Synthesis [143.55901940771568]
マルチモーダルMR画像合成のためのHybrid-fusion Network(Hi-Net)を提案する。
当社のHi-Netでは,各モーダリティの表現を学習するために,モーダリティ特化ネットワークを用いている。
マルチモーダル合成ネットワークは、潜在表現と各モーダルの階層的特徴を密結合するように設計されている。
論文 参考訳(メタデータ) (2020-02-11T08:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。